forked from karoly-hars/GAN_image_colorizing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
datasets.py
129 lines (105 loc) · 4.48 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import cv2
import pickle
import numpy as np
from torch.utils.data import Dataset
import random
def unpickle_batch(file):
with open(file, 'rb') as f:
dict_ = pickle.load(f, encoding='bytes')
return dict_
def preprocess(img_bgr):
# to 32bit img
img_bgr = img_bgr.astype(np.float32)/255.0
# transform to lab
img_lab = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2LAB)
# normalize
img_lab[:, :, 0] = img_lab[:, :, 0]/50 - 1
img_lab[:, :, 1] = img_lab[:, :, 1]/127
img_lab[:, :, 2] = img_lab[:, :, 2]/127
# transpose
img_lab = img_lab.transpose((2, 0, 1))
return img_lab
def postprocess(img_lab):
# transpose back
img_lab = img_lab.transpose((1, 2, 0))
# transform back
img_lab[:, :, 0] = (img_lab[:, :, 0] + 1)*50
img_lab[:, :, 1] = img_lab[:, :, 1]*127
img_lab[:, :, 2] = img_lab[:, :, 2]*127
# transform to bgr
img_bgr = cv2.cvtColor(img_lab, cv2.COLOR_LAB2BGR)
# to int8
img_bgr = (img_bgr*255.0).astype(np.uint8)
return img_bgr
class Cifar10Dataset(Dataset):
def __init__(self, root_dir, mirror=False, random_seed=None):
self.img_paths = [os.path.join(root_dir, f) for f in os.listdir(root_dir)]
if random_seed is not None:
self.img_paths.sort()
random.Random(random_seed).shuffle(self.img_paths)
self.mirror = mirror
def __len__(self):
return len(self.img_paths)
def __getitem__(self, idx):
img_path = self.img_paths[idx]
img_bgr = cv2.imread(img_path)
if self.mirror:
if random.random() > 0.5:
img_bgr = img_bgr[:, ::-1, :]
img_lab = preprocess(img_bgr)
return img_lab
@classmethod
def get_datasets_from_scratch(cls, data_path):
"""Download and extract dataset + create dataset objects."""
cls.get_cifar10_data(data_path)
data_dirs = cls.extract_cifar10_images(data_path)
datasets = dict()
datasets['train'] = cls(root_dir=data_dirs['train'], mirror=True)
datasets['test'] = cls(root_dir=data_dirs['test'], mirror=False, random_seed=1)
return datasets
@staticmethod
def get_cifar10_data(data_path):
"""Download and uncompress CIFAR10 dataset."""
if not os.path.exists(data_path):
# download
print('Downloading dataset...')
import urllib.request
os.makedirs(data_path)
urllib.request.urlretrieve('https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
os.path.join(data_path, 'cifar-10-python.tar.gz'))
# extract file
print('unzipping dataset...')
import tarfile
tar = tarfile.open(os.path.join(data_path, 'cifar-10-python.tar.gz'), 'r:gz')
tar.extractall(path=data_path)
tar.close()
else:
print('cifar10 already downloaded.')
@staticmethod
def extract_cifar10_images(data_path):
"""Restructure the CIFAR10 images and split it into train and test."""
# extract images from batches
data_batches = dict()
data_batches['test'] = [os.path.join(data_path, 'cifar-10-batches-py', 'test_batch')]
data_batches['train'] = [os.path.join(data_path, 'cifar-10-batches-py', f) for f in [
'data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4', 'data_batch_5'
]]
data_dirs = dict()
data_dirs['test'] = os.path.join(data_path, 'cifar-10-images', 'test')
data_dirs['train'] = os.path.join(data_path, 'cifar-10-images', 'train')
for phase in ['test', 'train']:
if not os.path.exists(data_dirs[phase]):
print('extracting {} images...'.format(phase))
os.makedirs(data_dirs[phase])
for data_batch in data_batches[phase]:
batch = unpickle_batch(data_batch)
for image_name, image_parts in zip(batch[b'filenames'], batch[b'data']):
r, g, b = image_parts[0:1024], image_parts[1024:2048], image_parts[2048:]
r, g, b = np.reshape(r, (32, -1)), np.reshape(g, (32, -1)), np.reshape(b, (32, -1))
img = np.stack((b, g, r), axis=2)
save_path = os.path.join(data_dirs[phase], image_name.decode('utf-8'))
cv2.imwrite(save_path, img)
else:
print('{} image set already extracted'.format(phase))
return data_dirs