Skip to content

Latest commit

 

History

History
239 lines (193 loc) · 9.99 KB

README.md

File metadata and controls

239 lines (193 loc) · 9.99 KB

水平集图像分割

1. 水平集变分推导

能量函数: $$ \varepsilon_{g,\lambda,\nu} = \lambda\mathcal{L}(\phi)+\nu\mathcal{A}g(\phi) $$ 其中: $$ \mathcal{L}g=\int{\Omega}g\delta(\phi)|\nabla\phi|dxdy,\qquad \mathcal{A}g=\int{\Omega}gH(-\phi)dxdy,\qquad g=\frac{1}{1+|\nabla G{\sigma}I|} $$ 水平集的优化目标是求得使其能量函数$\varepsilon_{g, \lambda, \nu}$能量最小的曲面$\phi$,即 $$ \phi^=\arg \min(\varepsilon_{g,\lambda,\nu})=\arg \min (\lambda\mathcal{L}(\phi)+\nu\mathcal{A}_g(\phi)) $$ 使用变分法对其进行求解:

首先来看第一项: $$ \mathcal{L}g=\int{\Omega}g\delta(\phi)|\nabla\phi|dxdy $$ 令$F(\phi)=g\delta(\phi)|\nabla\phi|$, 取一个很小的$\varepsilon$和一个随机函数$h$,满足$h|_{\partial \Omega}=0$,则 $$ \begin{aligned} F(\phi+\varepsilon h)&=g\delta(\phi+\varepsilon h)|\nabla(\phi+\varepsilon h)| \ &=g\delta(\phi+\varepsilon h)\sqrt{(\phi + \varepsilon h)_x^2+(\phi+\varepsilon h)_y^2} \end{aligned} $$ 对偏移量$\varepsilon$进行求导: $$ \frac{\partial F(\phi+\epsilon h)}{\partial \varepsilon}=gh\delta '(\phi+\varepsilon h)|\nabla(\phi+\varepsilon h)| + g\delta (\phi+\varepsilon h)\frac{h_x(\phi+\varepsilon h)_x + h_y(\phi+\varepsilon h)_y}{\sqrt{(\phi+\varepsilon h)_x^2+(\phi+\varepsilon h)_y^2}} $$

$$ \frac{\partial F(\phi+\epsilon h)}{\partial \varepsilon}\bigg |_{\varepsilon\rightarrow0}=gh\delta '(\phi)|\nabla(\phi)| + g\delta (\phi)\frac{h_x(\phi)_x + h_y(\phi)_y}{\sqrt{(\phi)_x^2+(\phi)_y^2}} $$

所以 $$ \frac{\partial \mathcal{L_g}(\phi+\varepsilon h)}{\partial \varepsilon}\bigg |{\varepsilon\rightarrow0}=\int{\Omega}gh\delta'(\phi)|\nabla\phi|dxdy+\int_{\Omega}g\delta(\phi)\frac{h_x\phi_x+h_y\phi_y}{\phi^2_x+\phi^2_y}dxdy $$ 其中,$\delta(\phi)=1if\phi=0else0$,因此式(7)中的第一项为零,式(7)可以进行进一步简化 $$ \begin{aligned} \frac{\partial \mathcal{L_g}(\phi+\varepsilon h)}{\partial \varepsilon}\bigg |{\varepsilon\rightarrow0} &=\int{\Omega}g\delta(\phi)\frac{h_x\phi_x+h_y\phi_y}{\phi^2_x+\phi^2_y}dxdy\ &=\int_{\Omega}\left[ \frac{\partial}{\partial x}(\frac{\phi_xg\delta(\phi)h}{|\nabla \phi|})+\frac{\partial}{\partial y}(\frac{\phi_y g\delta(\phi)h}{|\nabla \phi|})\right]dxdy -\int_{\Omega} \left[ \frac{\partial}{\partial x}(\frac{\phi_x g \delta(\phi)}{|\nabla \phi|})h+\frac{\partial}{\partial x}(\frac{\phi_y g \delta(\phi)}{|\nabla \phi|})h \right]dxdy\ &=\mathcal{L}{g1}+\mathcal{L}{g_2} \end{aligned} \tag{7.1} $$ 由格林公式: $$ \oint (Sdx+Rdy) = \iint_{\Omega}(\frac{dS}{dx}-\frac{dR}{dy})dxdy $$ 则式(7.1)中的第一项$\mathcal{L}{g1}$可以转化为: $$ \begin{aligned} \mathcal{L}{g1}&=\int_{\Omega}\left[ \frac{\partial}{\partial x}(\frac{\phi_xg\delta(\phi)h}{|\nabla h|})+\frac{\partial}{\partial y}(\frac{\phi_y g\delta(\phi)h}{|\nabla h|})\right]dxdy\ &=\oint h(g\delta(\phi)\phi_xdy-g\delta(\phi)\phi_ydx)\ &=0\quad (\because h|{\partial\Omega}=0) \end{aligned} $$ 所以 $$ \begin{aligned} \frac{\partial \mathcal{L_g}(\phi+\varepsilon h)}{\partial \varepsilon}\bigg |{\varepsilon\rightarrow0} &= -\int_{\Omega} \left[ \frac{\partial}{\partial x}(\frac{\phi_x g \delta(\phi)}{|\nabla \phi|})h+\frac{\partial}{\partial x}(\frac{\phi_y g \delta(\phi)}{|\nabla \phi|})h \right]dxdy\ &=-\int_{\Omega}h \text{div}(\frac{\nabla\phi g \delta(\phi)}{|\nabla \phi|})dxdy \end{aligned} \tag{7.2} $$ 当给定x, y时,$\nabla \phi$是向量,$g, \delta$都是标量,因此: $$ \begin{aligned} h\text{div}(\frac{\nabla\phi g \delta(\phi)}{|\nabla \phi|}) &= h\left[ \frac{\nabla \phi}{|\nabla \phi|}\nabla(g\delta(\phi))+\text{div}(\frac{\nabla \phi}{|\nabla \phi|})g\delta(\phi) \right]\ &= h\left[ \frac{\nabla \phi}{|\nabla \phi|}(\nabla g \cdot\delta(\phi)+g\delta'(\phi)\nabla\phi)+div(\frac{\nabla \phi}{|\nabla \phi|})g\delta(\phi) \right] \end{aligned} $$ 因为$h\frac{\nabla \phi}{|\nabla \phi|}g\delta'(\phi)\nabla\phi=0$,有 $$ h\text{div}(\frac{\nabla \phi g \delta(\phi)}{|\nabla \phi|})=h[\frac{\nabla \phi}{|\nabla \phi|}\nabla g\delta(\phi)+\text{div}(\frac{\nabla \phi}{|\nabla \phi|})g\delta(\phi)]=h\delta(\phi)\text{div}(\frac{\nabla \phi g}{|\nabla \phi|}) $$ 当$\mathcal{L}g$取最小值时,$\frac{\partial \mathcal{L_g}(\phi+\varepsilon h)}{\partial \varepsilon}\bigg |{\varepsilon\rightarrow0}=0$,由于$h$取得是任意函数,所以得 $$ \delta(\phi)\text{div}(\frac{\nabla \phi g}{|\nabla \phi|})=0 $$

再看第二项: $$ \mathcal{A}{g}=\int\Omega{gH(-\phi)dxdy},H是阶跃函数 $$ 令$F(\phi)=gH(-\phi)$,同理进行一个小的偏移量$\varepsilon h$,其中$h$是任意得函数,且 $h|_{\partial \Omega}=0$,则: $$ F(\phi+\varepsilon h)= gH(-\phi-\varepsilon h) $$

$$ \frac{\partial F(\phi + \varepsilon h)}{\partial \varepsilon}=-gh\frac{\partial}{\varepsilon}(H(-\phi-\varepsilon h))=-gh\delta(-\phi-\varepsilon h)=-gh\delta(\phi+\varepsilon h) $$

因此: $$ \frac{\partial F(\phi + \varepsilon h)}{\partial \varepsilon}\bigg|_{\varepsilon\rightarrow0}=-gh\delta(\phi) $$

$$ \frac{\partial \mathcal{A}g(\phi + \varepsilon h)}{\partial \varepsilon}\bigg|{\varepsilon \rightarrow0}=-\int_{\Omega}gh\delta(\phi)dxdy $$

当$\mathcal{A}_g$取最小值时,有$\frac{\partial \mathcal{A}g(\phi + \varepsilon h)}{\partial \varepsilon}\bigg|{\varepsilon \rightarrow0}=0$,由于$h$为任意函数,故: $$ g\delta(\phi)=0 $$

综合式(10)和式(16),可以导出水平集的演化方程为: $$ \frac{\partial \phi}{\partial t}=\lambda\delta(\phi)\text{div}(g\frac{\nabla\phi}{|\nabla\phi|})+\nu g\delta(\phi) $$

2. 基于水平集的图像分割

任务:利用如下演化方程,用matlab代码实现图像分割: $$ \frac{\partial \phi}{\partial t}=\mu[\Delta\phi - \text{div}(\frac{\nabla\phi}{|\nabla \phi|})]+\lambda\delta(\phi)\text{div}(g\frac{\nabla\phi}{|\nabla \phi|})+\nu g\delta(\phi)\ g = \frac{1}{1+|\nabla G_\sigma * I|^2},\quad \delta_{\varepsilon}(x)= \left{ \begin{array}{lr} 0, & |x| \gt \varepsilon \ \frac{1}{2\varepsilon}[1+cos(\frac{\pi x}{\varepsilon})], & |x| \le \varepsilon \end{array} \right. $$

2.1 原理

一个曲面的能量可以由以下变分能量函数进行定义: $$ \varepsilon(\phi)=\mu \mathcal{P}(\phi)+\varepsilon_{g, \lambda, \nu}(\phi) $$ 其中 $$ \mathcal{P}(\phi) = \int_\Omega \frac{1}{2}(|\nabla \phi-1)^2dxdy\ \varepsilon_{g,\lambda,\nu}(\phi) = \lambda\mathcal{L}(\phi)+\nu\mathcal{A}g(\phi) $$ $\mathcal{P}$限制曲面尽可能光滑(类似于正则项),$\varepsilon{g, \lambda, \nu}$限制曲面尽可能向边缘处逼近,通过这两项的权衡,找到使得形成这个平面最小的能量函数对应的曲面。

2.2 各项物理含义

要在提供的水平集代码基础上修改,首先需要理清式(18)中各项的物理含义。

$\phi$

首先来看变量$\phi$,这是定义的符号距离函数。 $$ \phi(x, t)= \left{ \begin{array}{lr} < 0, & x \in \Omega \ = 0, & x \in \partial \Omega \ > 0, & x \notin \Omega \end{array} \right. $$ 其中,t表示时间, x是水平集设计变量, $\phi$是水平集函数,$\Omega$是作用域(感兴趣区域),$\partial\Omega$ 是作用域的边界,为了保证演化的性能,一般设置初始演化平面斜率为1, 如下图所示:

image-20201210184945188

$\Delta \phi$

$\Delta \phi$是对符号距离函数$\phi$进行的拉普拉斯操作,物理意义:拉普拉斯算子其实就是针对空间标量函数的一种“操作”,即先求该标量函数的梯度场,再求梯度场的散度。数学表达如下: $$ \Delta f = \nabla^2f $$

将$\phi$进行拉普拉斯操作,得到结果如下图所示:

image-20201210193241897

$\text{div}(\frac{\nabla\phi}{|\nabla \phi|})$

$\text{div}(\frac{\nabla\phi}{|\nabla \phi|})$的物理含义是归一化后的梯度场的散度,即为曲率: $$ \kappa=div(\frac{\nabla\phi}{|\nabla \phi|}) = \frac{x'y''-y'x''}{(x'^2+y'^2)^{3/2}} $$ $\phi$的曲率如下图所示:

image-20201210200803778

$\delta (\phi)$

狄拉克算子,在此演化算法中取近似: $$ \delta_{\varepsilon}(x)= \left{ \begin{array}{lr} 0, & |x| \gt \varepsilon \ \frac{1}{2\varepsilon}[1+cos(\frac{\pi x}{\varepsilon})], & |x| \le \varepsilon \end{array} \right. $$

$g$

$g$的表达式如下所示: $$ g = \frac{1}{1+|\nabla G_\sigma * I|^2} $$ $G_\sigma$为高斯核函数,$I$为输入图像,则$g$ 可以理解为是边缘检测的一种指示函数,梯度越大,则$g$越小。

2.3 代码实现

比较Active contours without edges模型与此模型演化函数的异同,仅修改主函数Test_demo和演化函数evolution_cv,就可以实现 Level Set Evolution Without Re-initialization的模型。

代码:

主函数入口为:main.m

需要变更的主要函数为演化方程,即实现: $$ \phi^{t+1} =\phi^{t}+ \frac{\partial \phi}{\partial t}=\phi + \mu[\Delta\phi - \text{div}(\frac{\nabla\phi}{|\nabla \phi|})]+\lambda\delta(\phi)\text{div}(g\frac{\nabla\phi}{|\nabla \phi|})+\nu g\delta(\phi) $$ 虽然实现这一部分不难,但是很难进行参数的调节使得曲面演化完美,因此不得不采用作者论文中的部分code,实现结果如下图所示。可以看出,其对前两图的分割效果较好,第三者可能是由于初始符号函数的选择问题以及参数设置问题,分割效果并不是很好。

image-20201210232517697

image-20201210232548192

image-20201210232630089