参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?
示例:
《代码随想录》算法视频公开课:动态规划找到子状态之间的关系很重要!| LeetCode:96.不同的二叉搜索树,相信结合视频再看本篇题解,更有助于大家对本题的理解。
这道题目描述很简短,但估计大部分同学看完都是懵懵的状态,这得怎么统计呢?
关于什么是二叉搜索树,我们之前在讲解二叉树专题的时候已经详细讲解过了,也可以看看这篇二叉树:二叉搜索树登场!再回顾一波。
了解了二叉搜索树之后,我们应该先举几个例子,画画图,看看有没有什么规律,如图:
n为1的时候有一棵树,n为2有两棵树,这个是很直观的。
来看看n为3的时候,有哪几种情况。
当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!
(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)
当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!
当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!
发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。
思考到这里,这道题目就有眉目了。
dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量
元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
有2个元素的搜索树数量就是dp[2]。
有1个元素的搜索树数量就是dp[1]。
有0个元素的搜索树数量就是dp[0]。
所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]
如图所示:
此时我们已经找到递推关系了,那么可以用动规五部曲再系统分析一遍。
- 确定dp数组(dp table)以及下标的含义
dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]。
也可以理解是i个不同元素节点组成的二叉搜索树的个数为dp[i] ,都是一样的。
以下分析如果想不清楚,就来回想一下dp[i]的定义
- 确定递推公式
在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]
j相当于是头结点的元素,从1遍历到i为止。
所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量
- dp数组如何初始化
初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。
那么dp[0]应该是多少呢?
从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。
从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。
所以初始化dp[0] = 1
- 确定遍历顺序
首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。
那么遍历i里面每一个数作为头结点的状态,用j来遍历。
代码如下:
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
dp[i] += dp[j - 1] * dp[i - j];
}
}
- 举例推导dp数组
n为5时候的dp数组状态如图:
当然如果自己画图举例的话,基本举例到n为3就可以了,n为4的时候,画图已经比较麻烦了。
我这里列到了n为5的情况,是为了方便大家 debug代码的时候,把dp数组打出来,看看哪里有问题。
综上分析完毕,C++代码如下:
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + 1);
dp[0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
};
- 时间复杂度:$O(n^2)$
- 空间复杂度:$O(n)$
大家应该发现了,我们分析了这么多,最后代码却如此简单!
这道题目虽然在力扣上标记是中等难度,但可以算是困难了!
首先这道题想到用动规的方法来解决,就不太好想,需要举例,画图,分析,才能找到递推的关系。
然后难点就是确定递推公式了,如果把递推公式想清楚了,遍历顺序和初始化,就是自然而然的事情了。
可以看出我依然还是用动规五部曲来进行分析,会把题目的方方面面都覆盖到!
而且具体这五部分析是我自己平时总结的经验,找不出来第二个的,可能过一阵子 其他题解也会有动规五部曲了。
当时我在用动规五部曲讲解斐波那契的时候,一些录友和我反应,感觉讲复杂了。
其实当时我一直强调简单题是用来练习方法论的,并不能因为简单我就代码一甩,简单解释一下就完事了。
可能当时一些同学不理解,现在大家应该感受方法论的重要性了,加油💪
class Solution {
public int numTrees(int n) {
//初始化 dp 数组
int[] dp = new int[n + 1];
//初始化0个节点和1个节点的情况
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
for (int j = 1; j <= i; j++) {
//对于第i个节点,需要考虑1作为根节点直到i作为根节点的情况,所以需要累加
//一共i个节点,对于根节点j时,左子树的节点个数为j-1,右子树的节点个数为i-j
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
}
class Solution:
def numTrees(self, n: int) -> int:
dp = [0] * (n + 1) # 创建一个长度为n+1的数组,初始化为0
dp[0] = 1 # 当n为0时,只有一种情况,即空树,所以dp[0] = 1
for i in range(1, n + 1): # 遍历从1到n的每个数字
for j in range(1, i + 1): # 对于每个数字i,计算以i为根节点的二叉搜索树的数量
dp[i] += dp[j - 1] * dp[i - j] # 利用动态规划的思想,累加左子树和右子树的组合数量
return dp[n] # 返回以1到n为节点的二叉搜索树的总数量
func numTrees(n int)int{
dp := make([]int, n+1)
dp[0] = 1
for i := 1; i <= n; i++ {
for j := 1; j <= i; j++ {
dp[i] += dp[j-1] * dp[i-j]
}
}
return dp[n]
}
const numTrees =(n) => {
let dp = new Array(n+1).fill(0);
dp[0] = 1;
dp[1] = 1;
for(let i = 2; i <= n; i++) {
for(let j = 1; j <= i; j++) {
dp[i] += dp[j-1] * dp[i-j];
}
}
return dp[n];
};
function numTrees(n: number): number {
/**
dp[i]: i个节点对应的种树
dp[0]: -1; 无意义;
dp[1]: 1;
...
dp[i]: 2 * dp[i - 1] +
(dp[1] * dp[i - 2] + dp[2] * dp[i - 3] + ... + dp[i - 2] * dp[1]); 从1加到i-2
*/
const dp: number[] = [];
dp[0] = -1; // 表示无意义
dp[1] = 1;
for (let i = 2; i <= n; i++) {
dp[i] = 2 * dp[i - 1];
for (let j = 1, end = i - 1; j < end; j++) {
dp[i] += dp[j] * dp[end - j];
}
}
return dp[n];
};
impl Solution {
pub fn num_trees(n: i32) -> i32 {
let n = n as usize;
let mut dp = vec![0; n + 1];
dp[0] = 1;
for i in 1..=n {
for j in 1..=i {
dp[i] += dp[j - 1] * dp[i - j];
}
}
dp[n]
}
}
//开辟dp数组
int *initDP(int n) {
int *dp = (int *)malloc(sizeof(int) * (n + 1));
int i;
for(i = 0; i <= n; ++i)
dp[i] = 0;
return dp;
}
int numTrees(int n){
//开辟dp数组
int *dp = initDP(n);
//将dp[0]设为1
dp[0] = 1;
int i, j;
for(i = 1; i <= n; ++i) {
for(j = 1; j <= i; ++j) {
//递推公式:dp[i] = dp[i] + 根为j时左子树种类个数 * 根为j时右子树种类个数
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
object Solution {
def numTrees(n: Int): Int = {
var dp = new Array[Int](n + 1)
dp(0) = 1
for (i <- 1 to n) {
for (j <- 1 to i) {
dp(i) += dp(j - 1) * dp(i - j)
}
}
dp(n)
}
}
public class Solution
{
public int NumTrees(int n)
{
int[] dp = new int[n + 1];
dp[0] = 1;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= i; j++)
{
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
}