-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_attention.py
93 lines (81 loc) · 3.66 KB
/
main_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import argparse
import logging
import os
from time import time
import pandas as pd
import warnings
from autofe import AutoFE
from config_pool import configs
warnings.filterwarnings("ignore")
if __name__ == '__main__':
file_name = "airfoil"
parser = argparse.ArgumentParser()
parser.add_argument('--cuda', type=str, default="0", help='which gpu to use')
# parser.add_argument('--cuda', type=str, default="False", help='which gpu to use')
parser.add_argument("--train_size", type=float, default=0.7)
parser.add_argument("--epochs", type=int, default=300)
parser.add_argument("--ppo_epochs", type=int, default=10)
parser.add_argument("--episodes", type=int, default=24)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--entropy_weight", type=float, default=1e-4)
parser.add_argument("--baseline_weight", type=float, default=0.95)
parser.add_argument("--gama", type=float, default=0.9)
parser.add_argument("--gae_lambda", type=float, default=0.95)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--d_model", type=int, default=128)
parser.add_argument("--d_k", type=int, default=32)
parser.add_argument("--d_v", type=int, default=32)
parser.add_argument("--d_ff", type=int, default=64)
parser.add_argument("--n_heads", type=int, default=6)
parser.add_argument("--worker", type=int, default=12)
parser.add_argument("--steps_num", type=int, default=3)
parser.add_argument("--combine", type=bool, default=True, help='whether combine discrete features')
parser.add_argument("--preprocess", type=bool, default=False, help='whether preprocess data')
parser.add_argument("--seed", type=int, default=1, help='random seed')
parser.add_argument("--cv", type=int, default=5)
parser.add_argument("--cv_train_size", type=float, default=0.7)
parser.add_argument("--cv_seed", type=int, default=1)
parser.add_argument("--split_train_test", type=bool, default=False)
parser.add_argument("--shuffle", type=bool, default=False)
parser.add_argument("--enc_c_pth", type=str, default='', help="pre-trained model path of encoder_continuous")
parser.add_argument("--enc_d_pth", type=str, default='', help="pre-trained model path of encoder_discrete")
parser.add_argument("--mode", type=str, default=None, help="classify or regression")
parser.add_argument("--model", type=str, default='rf', help="lr or xgb or rf or lgb or cat")
parser.add_argument("--metric", type=str, default=None, help="f1,ks,auc,r2,rae,mae,mse")
parser.add_argument("--file_name", type=str, default=file_name, help='task name in config_pool')
args = parser.parse_args()
data_configs = configs[args.file_name]
c_columns = data_configs['c_columns']
d_columns = data_configs['d_columns']
target = data_configs['target']
dataset_path = data_configs["dataset_path"]
mode = data_configs['mode']
if args.model:
model = args.model
else:
model = data_configs["model"]
if args.metric:
metric = args.metric
else:
metric = data_configs["metric"]
if mode == 'classify':
metric = 'f1'
elif mode == 'regression':
metric = 'rae'
args.mode = mode
args.model = model
args.metric = metric
args.c_columns = c_columns
args.d_columns = d_columns
args.target = target
print(args)
df = pd.read_csv(dataset_path)
start = time()
autofe = AutoFE(df, args)
try:
autofe.fit_attention(args)
except Exception as e:
import traceback
logging.info(traceback.format_exc())
end = time()
logging.info(f'Total cost time: {round((end-start), 4)} s.')