From 2a7e9018ab75797bd103c7e9a851824fbf849412 Mon Sep 17 00:00:00 2001 From: Du Date: Sat, 8 Jun 2024 04:25:13 +1000 Subject: [PATCH] Update NIPS 2023 --- README.md | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/README.md b/README.md index 1c8d5be..15a80fe 100644 --- a/README.md +++ b/README.md @@ -99,7 +99,16 @@ To reduce repetition, some data are in abbreviated form. Some terms may not repr | :-: | :-: | :-: | :-: | :-: | - | | Paper Nums:100+ | | | | | | | Multivariable | Electricity
PEMSD7M
BikeNYC
[TimesNet_data](https://github.com/thuml/Time-Series-Library) | SCNN | [Disentangling Structured Components: Towards Adaptive, Interpretable and Scalable Time Series Forecasting](https://ieeexplore.ieee.org/document/10457027) | [Pytorch](https://github.com/JLDeng/SCNN)
![Stars](https://img.shields.io/github/stars/JLDeng/SCNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/JLDeng/SCNN?color=critical&style=social) | TKDE 2024 +| Multivariable | Solar
Wiki
Traffic
ECG
Electricity
COVID-19
Weather
ETT | FreTS | [Frequency-domain MLPs are More Effective Learners in Time Series Forecasting](https://proceedings.neurips.cc/paper_files/paper/2023/hash/f1d16af76939f476b5f040fd1398c0a3-Abstract-Conference.html) | [Pytorch](https://github.com/aikunyi/FreTS)
![Stars](https://img.shields.io/github/stars/aikunyi/FreTS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/aikunyi/FreTS?color=critical&style=social) | NIPS 2023 +| LLM4TS | Darts
Monash
Informer | - | [Large Language Models Are Zero-Shot Time Series Forecasters](https://proceedings.neurips.cc/paper_files/paper/2023/hash/3eb7ca52e8207697361b2c0fb3926511-Abstract-Conference.html) | [LLM](https://github.com/ngruver/llmtime)
![Stars](https://img.shields.io/github/stars/ngruver/llmtime?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ngruver/llmtime?color=critical&style=social) | NIPS 2023 +| Multivariable | ECL
Traffic
ETT
Weather | WITRAN | [WITRAN: Water-wave Information Transmission and Recurrent Acceleration Network for Long-range Time Series Forecasting](https://proceedings.neurips.cc/paper_files/paper/2023/hash/2938ad0434a6506b125d8adaff084a4a-Abstract-Conference.html) | [Pytorch](https://github.com/Water2sea/WITRAN)
![Stars](https://img.shields.io/github/stars/Water2sea/WITRAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Water2sea/WITRAN?color=critical&style=social) | NIPS 2023 | Multivariable | ETT
Weather
Electricity | OneNet | [OneNet: Enhancing Time Series Forecasting Models under Concept Drift by Online Ensembling](https://proceedings.neurips.cc/paper_files/paper/2023/hash/dd6a47bc0aad6f34aa5e77706d90cdc4-Abstract-Conference.html) | [Pytorch](https://github.com/yfzhang114/OneNet)
![Stars](https://img.shields.io/github/stars/yfzhang114/OneNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/yfzhang114/OneNet?color=critical&style=social) | NIPS 2023 +| Multivariable | ECL
ETT
Exchange
ILI
Traffic
Weather | Koopa | [Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors](https://proceedings.neurips.cc/paper_files/paper/2023/hash/dd6a47bc0aad6f34aa5e77706d90cdc4-Abstract-Conference.html) | [Pytorch](https://github.com/thuml/Koopa)
![Stars](https://img.shields.io/github/stars/thuml/Koopa?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuml/Koopa?color=critical&style=social) | NIPS 2023 +| Multivariable | Solar
Wiki
Traffic
COVID-19 | FourierGNN | [FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective](https://proceedings.neurips.cc/paper_files/paper/2023/hash/dc1e32dd3eb381dbc71482f6a96cbf86-Abstract-Conference.html) | [Pytorch](https://github.com/aikunyi/FourierGNN)
![Stars](https://img.shields.io/github/stars/aikunyi/FourierGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/aikunyi/FourierGNN?color=critical&style=social) | NIPS 2023 +| Multivariable | ETT
Weather
Electricity
Traffic | SimMTM | [SimMTM: A Simple Pre-Training Framework for Masked Time-Series Modeling](https://proceedings.neurips.cc/paper_files/paper/2023/hash/5f9bfdfe3685e4ccdbc0e7fb29cccf2a-Abstract-Conference.html) | [Pytorch](https://github.com/thuml/SimMTM)
![Stars](https://img.shields.io/github/stars/thuml/SimMTM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuml/SimMTM?color=critical&style=social) | NIPS 2023 +| Multivariable | ETT
Electricity
Exchange
Traffic
Weather
ILI | BasisFormer | [BasisFormer: Attention-based Time Series Forecasting with Learnable and Interpretable Basis](https://proceedings.neurips.cc/paper_files/paper/2023/hash/e150e6d0a1e5214740c39c6e4503ba7a-Abstract-Conference.html) | [Pytorch](https://github.com/nzl5116190/Basisformer)
![Stars](https://img.shields.io/github/stars/nzl5116190/Basisformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/nzl5116190/Basisformer?color=critical&style=social) | NIPS 2023 +| Irregular | Neonate
Traffic
MIMIC
StackOverflow
BookOrder
Exchange
ETT
ILI
Weather| ContiFormer | [ContiFormer: Continuous-Time Transformer for Irregular Time Series Modeling](https://proceedings.neurips.cc/paper_files/paper/2023/hash/9328208f88ec69420031647e6ff97727-Abstract-Conference.html) | [Pytorch](https://github.com/microsoft/SeqML/tree/main/ContiFormer) | NIPS 2023 +| Multivariable | Electricity
Exchange
Traffic
Weather
ILI
ETT | SAN | [Adaptive Normalization for Non-stationary Time Series Forecasting: A Temporal Slice Perspective](https://proceedings.neurips.cc/paper_files/paper/2023/hash/2e19dab94882bc95ed094c4399cfda02-Abstract-Conference.html) | [Pytorch](https://github.com/icantnamemyself/SAN)
![Stars](https://img.shields.io/github/stars/icantnamemyself/SAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/icantnamemyself/SAN?color=critical&style=social) | NIPS 2023 | Multivariable | ETT
Electricity
Exchange
Traffic
Weather
ILI | DeepTime (Framework,
Fourier Features,
Meta-optimization)| [ Learning Deep Time-index Models for Time Series Forecasting](https://openreview.net/forum?id=pgcfCCNQXO) | [Pytorch](https://github.com/salesforce/DeepTime)
![Stars](https://img.shields.io/github/stars/salesforce/DeepTime?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/salesforce/DeepTime?color=critical&style=social) | ICML 2023 | Multivariable | Synthetic
Taxi
Electricity
Traffic | FeatureP (Feature Enhancement) | [Feature Programming for Multivariate Time Series Prediction](https://openreview.net/forum?id=LVARH5wXM9) | [Pytorch](https://github.com/SirAlex900/FeatureProgramming)
![Stars](https://img.shields.io/github/stars/SirAlex900/FeatureProgramming?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/SirAlex900/FeatureProgramming?color=critical&style=social) | ICML 2023 | Multivariable | NorPool
Caiso
Weather
ETT
Wind
Traffic
Electricity
Exchange | TimeDiff | [Non-autoregressive Conditional Diffusion Models for Time Series Prediction](https://openreview.net/forum?id=wZsnZkviro) | None| ICML 2023 @@ -361,6 +370,7 @@ To reduce repetition, some data are in abbreviated form. Some terms may not repr | Task | Data | Model | Paper | Code | Publication | | :-: | :-: | :-: | :-: | :-: | - | | Paper Nums:40+ | | | | | | +| probability | Solar
Electricity
Traffic
Exchange
M4-Hourly
UberTLC
KDDCup
Wikipedia | TSDiff | [Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting](https://proceedings.neurips.cc/paper_files/paper/2023/hash/5a1a10c2c2c9b9af1514687bc24b8f3d-Abstract-Conference.html) | [GluonTS](https://github.com/amazon-science/unconditional-time-series-diffusion)
![Stars](https://img.shields.io/github/stars/amazon-science/unconditional-time-series-diffusion?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/amazon-science/unconditional-time-series-diffusion?color=critical&style=social) | NIPS 2023 | Quantile | Electricity
Kaggle
M4-daily
Traffic
Wiki | Ensemble | [Theoretical Guarantees of Learning Ensembling Strategies with Applications to Time Series Forecasting](https://proceedings.mlr.press/v202/hasson23a.html) | None | ICML 2023 | Quantile | Boston
Concrete
kin8nm
Power
Protein
Wine
M5 | BVAE | [Neural Spline Search for Quantile Probabilistic Modeling](https://ojs.aaai.org/index.php/AAAI/article/view/26184) | None | AAAI 2023 | Quantile | Traffc
Electricity
Solar Energy | pTSE | [pTSE: A Multi-model Ensemble Method for Probabilistic Time Series Forecasting](https://www.ijcai.org/proceedings/2023/521) | None| IJCAI 2023 @@ -473,6 +483,8 @@ To reduce repetition, some data are in abbreviated form. Some terms may not repr | :-: | :-: | :-: | :-: | :-: | - | | Paper Nums: 30+ | | | | | | | Anomaly Detection | SMD
MSL
SMAP
SWaT
PSM | MEMTO | [MEMTO: Memory-guided Transformer for Multivariate Time Series Anomaly Detection](https://proceedings.neurips.cc/paper_files/paper/2023/hash/b4c898eb1fb556b8d871fbe9ead92256-Abstract-Conference.html) | No | NIPS 2023 +| Anomaly Detection | PSM
SMD
SWaT | D3R | [Drift doesn’t Matter: Dynamic Decomposition with Diffusion Reconstruction for Unstable Multivariate Time Series Anomaly Detection](https://proceedings.neurips.cc/paper_files/paper/2023/hash/22f5d8e689d2a011cd8ead552ed59052-Abstract-Conference.html) | [Pytorch](https://github.com/ForestsKing/D3R)
![Stars](https://img.shields.io/github/stars/ForestsKing/D3R?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ForestsKing/D3R?color=critical&style=social) | NIPS 2023 +| Anomaly Detection |SWaT
WADI
PSM
MSL
SMD
trimSyn | Framework | [Nominality Score Conditioned Time Series Anomaly Detection by Point/Sequential Reconstruction](https://proceedings.neurips.cc/paper_files/paper/2023/hash/22f5d8e689d2a011cd8ead552ed59052-Abstract-Conference.html) | [Pytorch](https://github.com/andrewlai61616/NPSR)
![Stars](https://img.shields.io/github/stars/andrewlai61616/NPSR?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/andrewlai61616/NPSR?color=critical&style=social) | NIPS 2023 | Anomaly Detection | SMD
MSL
SMAP
PSM
DND| PUAD | [Prototype-oriented unsupervised anomaly detection for multivariate time series](https://proceedings.mlr.press/v202/li23d.html) | [Pytorch](https://github.com/LiYuxin321/PUAD)
![Stars](https://img.shields.io/github/stars/LiYuxin321/PUAD?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/LiYuxin321/PUAD?color=critical&style=social) | ICML 2023 | Anomaly Detection |UCR
SMD | surrogate | [Unsupervised Model Selection for Time Series Anomaly Detection](https://openreview.net/forum?id=gOZ_pKANaPW) | [Author](https://github.com/mononitogoswami) | ICLR 2023 | Anomaly Detection | MSL
SMAP
PSM
SMD | DCdetector | [DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection](https://dl.acm.org/doi/10.1145/3580305.3599295) | [Pytorch](https://github.com/DAMO-DI-ML/KDD2023-DCdetector)
![Stars](https://img.shields.io/github/stars/DAMO-DI-ML/KDD2023-DCdetector?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/DAMO-DI-ML/KDD2023-DCdetector?color=critical&style=social) | KDD 2023