-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvocoder.py
executable file
·93 lines (78 loc) · 2.53 KB
/
vocoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from __future__ import absolute_import, division, print_function, unicode_literals
import glob
import os
import numpy as np
import argparse
import json
import torch
from scipy.io.wavfile import write
from env import AttrDict
from hifi_gan import meldataset.MAX_WAV_VALUE
from models import Generator
h = None
device = None
def load_checkpoint(filepath, device):
assert os.path.isfile(filepath)
print("Loading '{}'".format(filepath))
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict
def scan_checkpoint(cp_dir, prefix):
pattern = os.path.join(cp_dir, prefix + '*')
cp_list = glob.glob(pattern)
if len(cp_list) == 0:
return ''
return sorted(cp_list)[-1]
def inference(a):
generator = Generator(h).to(device)
state_dict_g = load_checkpoint(a.checkpoint_file, device)
generator.load_state_dict(state_dict_g['generator'])
filelist = os.listdir(a.input_mels_dir)
os.makedirs(a.output_dir, exist_ok=True)
generator.eval()
generator.remove_weight_norm()
with torch.no_grad():
for i, filname in enumerate(filelist):
x = np.load(os.path.join(a.input_mels_dir, filname))
# x = torch.FloatTensor(x).unsqueeze(0).to(device)
x = torch.FloatTensor(x).to(device)
y_g_hat = generator(x)
audio = y_g_hat.squeeze()
audio = audio * MAX_WAV_VALUE
audio = audio.cpu().numpy().astype('int16')
output_file = os.path.join(a.output_dir, os.path.splitext(filname)[0] + '_generated_e2e.wav')
write(output_file, h.sampling_rate, audio)
print(output_file)
def hi():
print("hi")
#
# def main():
# print('Initializing Inference Process..')
#
# parser = argparse.ArgumentParser()
# parser.add_argument('--input_mels_dir', default='test_mel_files')
# parser.add_argument('--output_dir', default='generated_files_from_mel')
# parser.add_argument('--checkpoint_file', required=True)
# a = parser.parse_args()
#
# config_file = os.path.join(os.path.split(a.checkpoint_file)[0], 'config.json')
# with open(config_file) as f:
# data = f.read()
#
# global h
# json_config = json.loads(data)
# h = AttrDict(json_config)
#
# torch.manual_seed(h.seed)
# global device
# if torch.cuda.is_available():
# torch.cuda.manual_seed(h.seed)
# device = torch.device('cuda')
# else:
# device = torch.device('cpu')
#
# inference(a)
#
#
# if __name__ == '__main__':
# main()