forked from NVIDIA/CUDALibrarySamples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmp_geqrf.c
603 lines (496 loc) · 20.5 KB
/
mp_geqrf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/*
* Copyright 2023 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <mpi.h>
#include <cusolverMp.h>
#include "helpers.h"
#ifdef USE_CAL_MPI
#include <cal_mpi.h>
#endif
/* A is 1D laplacian, return A[N:-1:1, :] */
static void gen_matrix(int64_t M, int64_t N, double* A, int64_t lda)
{
/* set A[0:N, 0:N] = 0 */
for (int64_t J = 0; J < N; J++)
{
for (int64_t I = 0; I < M; I++)
{
A[I + J * lda] = J % 6 + I % 3 + 2 * I / 7 + 3 * J / 6;
}
}
/* set entries */
const int64_t M_N_min = (M < N) ? M : N;
for (int J = 0; J < M_N_min; J++)
{
/* main diagonal */
A[((M - 1) - J) + J * lda] = 2.0;
A[J + J * lda] = 2.0;
/* upper diagonal */
if (J > 0)
{
A[((M - 1) - (J - 1)) + J * lda] = -1.0;
}
/* lower diagonal */
if (J < (N - 1))
{
A[((M - 1) - (J + 1)) + J * lda] = -1.0;
}
}
}
/* Print matrix */
static void print_host_matrix(int64_t M, int64_t N, double* A, int64_t lda, const char* msg)
{
if (M * N > 2000) return;
printf("print_host_matrix : %s\n", msg);
for (int64_t i = 0; i < M; i++)
{
for (int64_t j = 0; j < N; j++)
{
printf("%.2lf ", A[i + j * lda]);
}
printf("\n");
}
}
int main(int argc, char* argv[])
{
/* Initialize MPI library */
MPI_Init(NULL, NULL);
/* Define dimensions, block sizes and offsets of A and B matrices */
const int64_t M = 10;
const int64_t N = 10;
/* Tile sizes */
const int64_t MA = 24;
const int64_t NA = 24;
/* Offsets of A and B matrices (base-1) */
const int64_t IA = 4;
const int64_t JA = 4;
/* Define grid of processors */
const int numRowDevices = 2;
const int numColDevices = 1;
/* Current implementation only allows RSRC,CSRC=(0,0) */
const uint32_t RSRCA = 0;
const uint32_t CSRCA = 0;
assert(RSRCA == 0 && CSRCA == 0); // only RSRCA==0 and CSRC==0 are supported
/* Get rank id and rank size of the comm. */
int rankSize, rankId;
MPI_Comm_size(MPI_COMM_WORLD, &rankSize);
MPI_Comm_rank(MPI_COMM_WORLD, &rankId);
/* Library handles */
cusolverMpHandle_t cusolverMpHandle = NULL;
cal_comm_t cal_comm = NULL;
/* Error codes */
cusolverStatus_t cusolverStat = CUSOLVER_STATUS_SUCCESS;
calError_t calStat = CAL_OK;
cudaError_t cudaStat = cudaSuccess;
/* User defined stream */
cudaStream_t localStream = NULL;
/*
* localDeviceId is the deviceId from rank's point of view. This is
* system-dependent. For example, setting one device per process,
* Summit always sees the local device as device 0.
*/
const int localDeviceId = getLocalRank();
cudaStat = cudaSetDevice(localDeviceId);
assert(cudaStat == cudaSuccess);
cudaStat = cudaFree(0);
assert(cudaStat == cudaSuccess);
/* Create communicator */
#ifdef USE_CAL_MPI
calStat = cal_comm_create_mpi(MPI_COMM_WORLD, rankId, rankSize, localDeviceId, &cal_comm);
#else
cal_comm_create_params_t params;
params.allgather = allgather;
params.req_test = request_test;
params.req_free = request_free;
params.data = (void*)(MPI_COMM_WORLD);
params.rank = rankId;
params.nranks = rankSize;
params.local_device = localDeviceId;
calStat = cal_comm_create(params, &cal_comm);
#endif
assert(calStat == CAL_OK);
/* Create local stream */
cudaStat = cudaStreamCreate(&localStream);
assert(cudaStat == cudaSuccess);
/* Initialize cusolverMp library handle */
cusolverStat = cusolverMpCreate(&cusolverMpHandle, localDeviceId, localStream);
assert(cusolverStat == CUSOLVER_STATUS_SUCCESS);
/* cusolverMp grids */
cusolverMpGrid_t gridA = NULL;
/* cusolverMp matrix descriptors */
cusolverMpMatrixDescriptor_t descrA = NULL;
/* Distributed matrices */
void* d_A = NULL;
void* d_tau = NULL;
/* Distributed device workspace */
void* d_work_geqrf = NULL;
/* Distributed host workspace */
void* h_work_geqrf = NULL;
/* size of workspace on device */
size_t workspaceInBytesOnDevice_geqrf = 0;
/* size of workspace on host */
size_t workspaceInBytesOnHost_geqrf = 0;
/* error codes from cusolverMp (device) */
int* d_info_geqrf = NULL;
/* error codes from cusolverMp (host) */
int h_info_geqrf = 0;
/* =========================================== */
/* Create inputs on master rank */
/* =========================================== */
/* Single process per device */
assert((numRowDevices * numColDevices) <= rankSize);
/* =========================================== */
/* Create inputs on master rank */
/* =========================================== */
const int64_t lda = (IA - 1) + M;
const int64_t colsA = (JA - 1) + N;
double* h_A = NULL;
double* h_QR = NULL;
double* h_tau = NULL;
void* d_global_Q = NULL;
void* d_global_R = NULL;
void* d_global_tau = NULL;
if (rankId == 0)
{
/* allocate host workspace */
h_A = (double*)malloc(lda * colsA * sizeof(double));
h_QR = (double*)malloc(lda * colsA * sizeof(double));
memset(h_A, 0, lda * colsA * sizeof(double));
double* _A = &h_A[(IA - 1) + (JA - 1) * lda]; // first entry of A
gen_matrix(M, N, _A, lda);
print_host_matrix(lda, colsA, h_A, lda, "Input matrix A");
h_tau = (double*)malloc(lda * sizeof(double));
}
/* =========================================== */
/* COMPUTE LLDA AND LLDB */
/* =========================================== */
/*
* Compute number of tiles per rank to store local portion of A
*
* Current implementation has the following restrictions on the size of
* the device buffer size:
* - Rows of device buffer is a multiple of MA
* - Cols of device buffer is a multiple of NA
*
* This limitation will be removed on the official release.
*/
const int64_t LLDA = cusolverMpNUMROC(lda, MA, rankId % numRowDevices, RSRCA, numRowDevices);
const int64_t localColsA = cusolverMpNUMROC(colsA, NA, rankId / numRowDevices, CSRCA, numColDevices);
/*
* Compute number of tiles per rank to store local portion of B
*
* Current implementation has the following restrictions on the size of
* the device buffer size:
* - Rows of device buffer is a multiple of MB
* - Cols of device buffer is a multiple of NB
*
* This limitation will be removed on the official release.
*/
/* Allocate global d_A */
cudaStat = cudaMalloc((void**)&d_A, localColsA * LLDA * sizeof(double));
assert(cudaStat == cudaSuccess);
/* =========================================== */
/* CREATE GRID DESCRIPTORS */
/* =========================================== */
cusolverStat = cusolverMpCreateDeviceGrid(
cusolverMpHandle, &gridA, cal_comm, numRowDevices, numColDevices, CUSOLVERMP_GRID_MAPPING_COL_MAJOR);
assert(cusolverStat == CUSOLVER_STATUS_SUCCESS);
/* =========================================== */
/* CREATE MATRIX DESCRIPTORS */
/* =========================================== */
cusolverStat = cusolverMpCreateMatrixDesc(
&descrA, gridA, CUDA_R_64F, (IA - 1) + M, (JA - 1) + N, MA, NA, RSRCA, CSRCA, LLDA);
assert(cusolverStat == CUSOLVER_STATUS_SUCCESS);
/* Allocate global d_tau */
cudaStat = cudaMalloc((void**)&d_tau, localColsA * sizeof(double));
assert(cudaStat == cudaSuccess);
/* =========================================== */
/* ALLOCATE D_INFO */
/* =========================================== */
cudaStat = cudaMalloc((void**)&d_info_geqrf, sizeof(int));
assert(cudaStat == cudaSuccess);
/* =========================================== */
/* RESET D_INFO */
/* =========================================== */
cudaStat = cudaMemset(d_info_geqrf, 0, sizeof(int));
assert(cudaStat == cudaSuccess);
/* =========================================== */
/* QUERY WORKSPACE SIZE FOR MP ROUTINES */
/* =========================================== */
cusolverStat = cusolverMpGeqrf_bufferSize(cusolverMpHandle,
M,
N,
d_A,
IA,
JA,
descrA,
CUDA_R_64F,
&workspaceInBytesOnDevice_geqrf,
&workspaceInBytesOnHost_geqrf);
assert(cusolverStat == CUSOLVER_STATUS_SUCCESS);
/* =========================================== */
/* ALLOCATE Pgeqrf WORKSPACE */
/* =========================================== */
cudaStat = cudaMalloc((void**)&d_work_geqrf, workspaceInBytesOnDevice_geqrf);
assert(cudaStat == cudaSuccess);
h_work_geqrf = (void*)malloc(workspaceInBytesOnHost_geqrf);
assert(h_work_geqrf != NULL);
/* =========================================== */
/* SCATTER MATRICES A AND B FROM MASTER */
/* =========================================== */
cusolverStat = cusolverMpMatrixScatterH2D(cusolverMpHandle,
lda,
colsA,
(void*)d_A, /* routine requires void** */
1,
1,
descrA,
0, /* root rank */
(void*)h_A,
lda);
assert(cusolverStat == CUSOLVER_STATUS_SUCCESS);
/* sync wait for data to arrive to device */
calStat = cal_stream_sync(cal_comm, localStream);
assert(calStat == CAL_OK);
/* =========================================== */
/* CALL Pgeqrf */
/* =========================================== */
cusolverStat = cusolverMpGeqrf(cusolverMpHandle,
M,
N,
d_A,
IA,
JA,
descrA,
d_tau,
CUDA_R_64F,
d_work_geqrf,
workspaceInBytesOnDevice_geqrf,
h_work_geqrf,
workspaceInBytesOnHost_geqrf,
d_info_geqrf);
/* sync after cusolverMpgeqrf */
calStat = cal_stream_sync(cal_comm, localStream);
assert(calStat == CAL_OK);
/* copy d_info_geqrf to host */
cudaStat = cudaMemcpyAsync(&h_info_geqrf, d_info_geqrf, sizeof(int), cudaMemcpyDeviceToHost, localStream);
assert(cudaStat == cudaSuccess);
/* =========================================== */
/* GATHER MATRICES A AND B FROM MASTER */
/* =========================================== */
/* Copy solution to h_A */
cusolverStat = cusolverMpMatrixGatherD2H(cusolverMpHandle,
lda,
colsA,
(void*)d_A,
1,
1,
descrA,
0, /* master rank, destination */
(void*)h_QR,
lda);
assert(cusolverStat == CUSOLVER_STATUS_SUCCESS);
/* sync wait for data to arrive to host */
calStat = cal_stream_sync(cal_comm, localStream);
assert(calStat == CAL_OK);
/* =========================================== */
/* PRINT A ON RANK 0 */
/* =========================================== */
if (rankId == 0)
{
print_host_matrix(lda, colsA, h_QR, lda, "Output matrix QR");
}
// allocate global GPU arrays and copy h_A to d_global_Q, d_global_R
if (rankId == 0)
{
cudaStat = cudaMalloc((void**)&d_global_Q, lda * colsA * sizeof(double));
assert(cudaStat == cudaSuccess);
cudaStat = cudaMalloc((void**)&d_global_R, lda * colsA * sizeof(double));
assert(cudaStat == cudaSuccess);
cudaStat = cudaMalloc((void**)&d_global_tau, colsA * sizeof(double));
assert(cudaStat == cudaSuccess);
cudaStat = cudaMemcpy(d_global_Q, h_A, sizeof(double) * lda * colsA, cudaMemcpyHostToDevice);
assert(cudaStat == cudaSuccess);
cudaStat = cudaMemcpy(d_global_R, d_global_Q, sizeof(double) * lda * colsA, cudaMemcpyDeviceToDevice);
assert(cudaStat == cudaSuccess);
// compare to 1 gpu cusolverDnGeqrf
cusolverDnParams_t dn_geqrf_params = NULL;
cusolverStat = cusolverDnCreateParams(&dn_geqrf_params);
// cusolverDnHandle_t cudenseHandle = cusolverMpHandle->cusolverDnH;
cusolverDnHandle_t cudenseHandle;
cusolverStat = cusolverDnCreate(&cudenseHandle);
assert(cusolverStat == CUSOLVER_STATUS_SUCCESS);
cusolverStat = cusolverDnSetStream(cudenseHandle, localStream);
assert(cusolverStat == CUSOLVER_STATUS_SUCCESS);
const void* d_global_Q_ptr = (double*)d_global_Q + ((IA - 1) + (JA - 1) * lda);
cusolverStat = cusolverDnXgeqrf( // overwrites A
cudenseHandle,
dn_geqrf_params,
M,
N,
CUDA_R_64F,
(void*)d_global_Q_ptr, // in/out
lda,
CUDA_R_64F,
(void*)d_global_tau,
CUDA_R_64F,
(void*)d_work_geqrf,
workspaceInBytesOnDevice_geqrf,
(void*)h_work_geqrf,
workspaceInBytesOnHost_geqrf,
d_info_geqrf);
assert(cusolverStat == CUSOLVER_STATUS_SUCCESS);
cudaStat = cudaMemcpy(h_A, d_global_Q, sizeof(double) * lda * colsA, cudaMemcpyDeviceToHost);
assert(cudaStat == cudaSuccess);
print_host_matrix(lda, colsA, h_A, lda, "A after cusolverDnXgeqrf");
int passed = 0;
int failed = 0;
int passed_abs = 0;
int failed_abs = 0;
for (int i = 0; i < (M + IA - 1) * (N + JA - 1); i++)
{
if (fabs(h_A[i] - h_QR[i]) < 0.001)
passed++;
else
failed++;
if (fabs(fabs(h_A[i]) - fabs(h_QR[i])) < 0.001)
passed_abs++;
else
failed_abs++;
h_A[i] = fabs(h_A[i] - h_QR[i]);
}
print_host_matrix(lda, colsA, h_A, lda, "difference");
printf("passed_abs %d failed_abs %d passed %d failed %d\n", passed_abs, failed_abs, passed, failed);
}
/* =========================================== */
/* CLEAN UP HOST WORKSPACE ON MASTER */
/* =========================================== */
if (rankId == 0)
{
if (h_A)
{
free(h_A);
h_A = NULL;
}
if (h_tau)
{
free(h_tau);
h_tau = NULL;
}
}
/* =========================================== */
/* DESTROY MATRIX DESCRIPTORS */
/* =========================================== */
cusolverStat = cusolverMpDestroyMatrixDesc(descrA);
assert(cusolverStat == CUSOLVER_STATUS_SUCCESS);
/* =========================================== */
/* DESTROY MATRIX GRIDS */
/* =========================================== */
cusolverStat = cusolverMpDestroyGrid(gridA);
assert(cusolverStat == CUSOLVER_STATUS_SUCCESS);
/* =========================================== */
/* DEALLOCATE DEVICE WORKSPACE */
/* =========================================== */
if (d_A != NULL)
{
cudaStat = cudaFree(d_A);
assert(cudaStat == cudaSuccess);
d_A = NULL;
}
if (d_tau != NULL)
{
cudaStat = cudaFree(d_tau);
assert(cudaStat == cudaSuccess);
d_tau = NULL;
}
if (d_work_geqrf != NULL)
{
cudaStat = cudaFree(d_work_geqrf);
assert(cudaStat == cudaSuccess);
d_work_geqrf = NULL;
}
if (d_info_geqrf != NULL)
{
cudaStat = cudaFree(d_info_geqrf);
assert(cudaStat == cudaSuccess);
d_info_geqrf = NULL;
}
/* =========================================== */
/* DEALLOCATE HOST WORKSPACE */
/* =========================================== */
if (h_work_geqrf)
{
free(h_work_geqrf);
h_work_geqrf = NULL;
}
/* =========================================== */
/* CLEANUP */
/* =========================================== */
/* Destroy cusolverMp handle */
cusolverStat = cusolverMpDestroy(cusolverMpHandle);
assert(cusolverStat == CUSOLVER_STATUS_SUCCESS);
/* sync before cal_comm_destroy */
calStat = cal_comm_barrier(cal_comm, localStream);
assert(calStat == CAL_OK);
/* destroy CAL communicator */
calStat = cal_comm_destroy(cal_comm);
assert(calStat == CAL_OK);
/* destroy user stream */
cudaStat = cudaStreamDestroy(localStream);
assert(cudaStat == cudaSuccess);
/* MPI barrier before MPI_Finalize */
MPI_Barrier(MPI_COMM_WORLD);
/* Finalize MPI environment */
MPI_Finalize();
return 0;
};