forked from NVIDIA/CUDALibrarySamples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sample_cublasLt_LtHSHgemmStridedBatchSimple.cu
108 lines (98 loc) · 6.27 KB
/
sample_cublasLt_LtHSHgemmStridedBatchSimple.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
/*
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cublasLt.h>
#include "sample_cublasLt_LtHSHgemmStridedBatchSimple.h"
#include "helpers.h"
/// Sample wrapper executing mixed precision gemm with cublasLtMatmul, nearly a drop-in replacement for cublasGemmEx,
/// with addition of the workspace to support split-K algorithms
///
/// pointer mode is always host, to change it configure the appropriate matmul descriptor attribute
/// matmul is not using cublas handle's configuration of math mode, here tensor ops are implicitly allowed
void LtHSHgemmStridedBatchSimple(cublasLtHandle_t ltHandle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const float *alpha, /* host pointer */
const __half *A,
int lda,
int64_t stridea,
const __half *B,
int ldb,
int64_t strideb,
const float *beta, /* host pointer */
__half *C,
int ldc,
int64_t stridec,
int batchCount,
void *workspace,
size_t workspaceSize) {
cublasLtMatmulDesc_t operationDesc = NULL;
cublasLtMatrixLayout_t Adesc = NULL, Bdesc = NULL, Cdesc = NULL;
// create operation desciriptor; see cublasLtMatmulDescAttributes_t for details about defaults; here we just need to
// set the transforms for A and B
checkCublasStatus(cublasLtMatmulDescCreate(&operationDesc, CUBLAS_COMPUTE_32F, CUDA_R_32F));
checkCublasStatus(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa)));
checkCublasStatus(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transb)));
// create matrix descriptors, we need to configure batch size and counts in this case
checkCublasStatus(cublasLtMatrixLayoutCreate(&Adesc, CUDA_R_16F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda));
checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Adesc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batchCount, sizeof(batchCount)));
checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Adesc, CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &stridea, sizeof(stridea)));
checkCublasStatus(cublasLtMatrixLayoutCreate(&Bdesc, CUDA_R_16F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb));
checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Bdesc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batchCount, sizeof(batchCount)));
checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Bdesc, CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &strideb, sizeof(strideb)));
checkCublasStatus(cublasLtMatrixLayoutCreate(&Cdesc, CUDA_R_16F, m, n, ldc));
checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Cdesc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batchCount, sizeof(batchCount)));
checkCublasStatus(cublasLtMatrixLayoutSetAttribute(Cdesc, CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &stridec, sizeof(stridec)));
// in this simplified example we take advantage of cublasLtMatmul shortcut notation with algo=NULL which will force
// matmul to get the basic heuristic result internally. Downsides of this approach are that there is no way to
// configure search preferences (e.g. disallow tensor operations or some reduction schemes) and no way to store the
// algo for later use
checkCublasStatus(cublasLtMatmul(ltHandle,
operationDesc,
alpha,
A,
Adesc,
B,
Bdesc,
beta,
C,
Cdesc,
C,
Cdesc,
NULL,
workspace,
workspaceSize,
0));
// descriptors are no longer needed as all GPU work was already enqueued
if (Cdesc) checkCublasStatus(cublasLtMatrixLayoutDestroy(Cdesc));
if (Bdesc) checkCublasStatus(cublasLtMatrixLayoutDestroy(Bdesc));
if (Adesc) checkCublasStatus(cublasLtMatrixLayoutDestroy(Adesc));
if (operationDesc) checkCublasStatus(cublasLtMatmulDescDestroy(operationDesc));
}