Skip to content

Latest commit

 

History

History
100 lines (67 loc) · 6.12 KB

README.md

File metadata and controls

100 lines (67 loc) · 6.12 KB

HRNet

Deep High-Resolution Representation Learning for Visual Recognition

Introduction

High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, the proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams in parallel; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. It shows the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems.

Figure 1. Architecture of HRNet [1]

Results

Our reproduced model performance on ImageNet-1K is reported as follows.

Model Context Top-1 (%) Top-5 (%) Params (M) Recipe Download
hrnet_w32 D910x8-G 80.64 95.44 41.30 yaml weights
hrnet_w48 D910x8-G 81.19 95.69 77.57 yaml weights

Notes

  • Context: Training context denoted as {device}x{pieces}-{MS mode}, where mindspore mode can be G - graph mode or F - pynative mode with ms function. For example, D910x8-G is for training on 8 pieces of Ascend 910 NPU using graph mode.
  • Top-1 and Top-5: Accuracy reported on the validation set of ImageNet-1K.

Quick Start

Preparation

Installation

Please refer to the installation instruction in MindCV.

Dataset Preparation

Please download the ImageNet-1K dataset for model training and validation.

Training

  • Distributed Training

It is easy to reproduce the reported results with the pre-defined training recipe. For distributed training on multiple Ascend 910 devices, please run

# distributed training on multiple GPU/Ascend devices
mpirun -n 8 python train.py --config configs/hrnet/hrnet_w32_ascend.yaml --data_dir /path/to/imagenet

If the script is executed by the root user, the --allow-run-as-root parameter must be added to mpirun.

Similarly, you can train the model on multiple GPU devices with the above mpirun command.

For detailed illustration of all hyper-parameters, please refer to config.py.

Note: As the global batch size (batch_size x num_devices) is an important hyper-parameter, it is recommended to keep the global batch size unchanged for reproduction or adjust the learning rate linearly to a new global batch size.

  • Standalone Training

If you want to train or finetune the model on a smaller dataset without distributed training, please run:

# standalone training on a CPU/GPU/Ascend device
python train.py --config configs/hrnet/hrnet_w32_ascend.yaml --data_dir /path/to/dataset --distribute False

Validation

To validate the accuracy of the trained model, you can use validate.py and parse the checkpoint path with --ckpt_path.

python validate.py -c configs/hrnet/hrnet_w32_ascend.yaml --data_dir /path/to/imagenet --ckpt_path /path/to/ckpt

Deployment

To deploy online inference services with the trained model efficiently, please refer to the deployment tutorial.

References

[1] Jingdong Wang, Ke Sun, Tianheng Cheng, et al. Deep High-Resolution Representation Learning for Visual Recognition[J]. arXiv preprint arXiv:1908.07919, 2019.