-
Notifications
You must be signed in to change notification settings - Fork 0
/
python_pipeline.py
283 lines (228 loc) · 11.3 KB
/
python_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os, psutil, sys
import random
from colbert.utils.parser import Arguments
from paths import *
from colbert.ranking.retrieval import retrieve
from colbert.ranking.batch_retrieval import batch_retrieve
from colbert.utils.runs import Run
from colbert.evaluation.loaders import load_colbert, load_qrels, load_queries, load_topK_pids
from colbert.indexing.faiss import get_faiss_index_name
from colbert.ranking.reranking import rerank
from colbert.ranking.batch_reranking import batch_rerank
from argparse import Namespace
from preprocessing.postprocess_runs import main as postprocess_runs
from preprocessing.evaluator import main as evaluator
from copy import deepcopy
from pprint import pprint
config = {"cast19": {'collections': ['MSMARCO.L2.32x200k.180len',
'CAR.FirstP.L2.32x200k.180len'],
'collection_mappings': [path_collection_mappings['marcoP'],
path_collection_mappings['CAR']],
'qrel': path_qrels['cast19'],
},
"cast20": {'collections': ['MSMARCO.L2.32x200k.180len',
'CAR.FirstP.L2.32x200k.180len'],
'collection_mappings': [path_collection_mappings['marcoP'],
path_collection_mappings['CAR']],
'qrel': path_qrels['cast20'],
},
"cast21": {'collections': ["kilt.FirstP.L2.32x200k.180len",
"wapo.FirstP.L2.32x200k.180len",
"marco.FirstP.L2.32x200k.180len"],
'collection_mappings': [path_collection_mappings['KILT'],
path_collection_mappings['WAPO'],
path_collection_mappings['marcoD']],
'qrel': path_qrels['cast21'],
}
}
def sizeof_fmt(num, suffix='B'):
''' by Fred Cirera, https://stackoverflow.com/a/1094933/1870254, modified'''
for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']:
if abs(num) < 1024.0:
return "%3.1f %s%s" % (num, unit, suffix)
num /= 1024.0
return "%.1f %s%s" % (num, 'Yi', suffix)
def retrieve_step(args):
# Run retrieval
random.seed(12345)
args.depth = args.depth if args.depth > 0 else None
if args.part_range:
part_offset, part_endpos = map(int, args.part_range.split('..'))
args.part_range = range(part_offset, part_endpos)
with Run.context():
args.colbert, args.checkpoint = load_colbert(args)
args.qrels = load_qrels(args.qrels)
args.queries = load_queries(args.queries)
args.index_path = os.path.join(args.index_root, args.index_name)
if args.faiss_name is not None:
args.faiss_index_path = os.path.join(args.index_path, args.faiss_name)
else:
args.faiss_index_path = os.path.join(args.index_path, get_faiss_index_name(args))
if args.batch:
return batch_retrieve(args)
else:
return retrieve(args)
def rerank_step(args):
# Run reranking
if args.part_range:
part_offset, part_endpos = map(int, args.part_range.split('..'))
args.part_range = range(part_offset, part_endpos)
with Run.context():
if not isinstance(args.checkpoint,str):
args.checkpoint = path_colbert_checkpoint
args.colbert, args.checkpoint = load_colbert(args)
args.queries = load_queries(args.queries)
args.qrels = load_qrels(args.qrels)
args.topK_pids, args.qrels = load_topK_pids(args.topK, qrels=args.qrels)
args.index_path = os.path.join(args.index_root, args.index_name)
if args.batch:
return batch_rerank(args)
else:
return rerank(args)
def add_static_args(args):
# Add arguments that are static in our experiments
args.amp = True
args.doc_maxlen = 180
args.mask_punctuation = True
args.nprobe = 32
args.partitions = 32768
args.bsize = 1
args.checkpoint = path_colbert_checkpoint
args.index_root = path_index_root
# args.root = os.getcwd() # get the default (experiments/)
args.batch = True
if args.setting=='raw':
args.query_maxlen=32
args.queries = path_queries[args.dataset]['raw']
args.mask_method = None
elif args.setting=='ZeCo2':
args.query_maxlen = 256
args.queries = path_queries[args.dataset]['full_conv']
args.mask_method = 'ZeCo2'
elif args.setting=='allHistory':
args.query_maxlen = 256
args.queries = path_queries[args.dataset]['full_conv']
args.mask_method = None
elif args.setting=='human':
args.query_maxlen = 32
args.queries = path_queries[args.dataset]['human']
args.mask_method = None
# To add from parsing
# query_maxlen
# queries
# mask_method
# experiment
# index_name
# run?
return args
def get_retriever_args(global_args):
retriever_args = deepcopy(global_args)
retriever_args.faiss_depth = 1024
retriever_args.retrieve_only = True
# add here "initial" args?
return retriever_args
def get_reranker_args(global_args, path_topK):
reranker_args = deepcopy(global_args)
reranker_args.log_scores = True
reranker_args.topK = path_topK
return reranker_args
if __name__ == "__main__":
parser_global = Arguments(description='End-to-end retrieval and ranking with ColBERT.')
# # Retriever args
# parser_global.add_model_parameters()
# parser_global.add_model_inference_parameters()
# # parser_global.add_ranking_input() # included in add reranking input!
# parser_global.add_retrieval_input()
# get retriever defaults
parser_global.add_argument('--faiss_name', dest='faiss_name', default=None, type=str)
parser_global.add_argument('--part-range', dest='part_range', default=None, type=str)
parser_global.add_argument('--batch', dest='batch', default=False, action='store_true')
parser_global.add_argument('--depth', dest='depth', default=1000, type=int)
parser_global.add_argument('--similarity', dest='similarity', default='cosine', choices=['cosine', 'l2'])
parser_global.add_argument('--dim', dest='dim', default=128, type=int)
parser_global.add_argument('--collection', dest='collection', default=None)
parser_global.add_argument('--qrels', dest='qrels', default=None)
# get reranker defaults
parser_global.add_argument('--shortcircuit', dest='shortcircuit', default=False, action='store_true')
# # Reranker args
parser_global.add_argument('--step', dest='step', default=1, type=int)
# parser_global.add_argument('--log-scores', dest='log_scores', default=False, action='store_true')
#
# parser_global.add_reranking_input()
# My args
parser_global.add_argument('--debug', default=False, required=False, action="store_true", help='debugging flag' )
# parser_global.add_argument('--mask_method', default=None, required=False,
# choices = [None,'ZeCo2'],
# help='Do matching only on specific tokens')
# parser_global.add_argument('--query_maxlen', dest='query_maxlen', default=32, type=int)
# parser_global.add_argument('--queries', dest='queries', default=None)
parser_global.add_argument('--overwrite_rundir', dest='overwrite_rundir', default=False,
action="store_true", help='do not ask for confirmation to overwrite run directory')
# parser_global.add_argument('--experiment', dest='experiment', default='dirty')
# parser_global.add_argument('--index_name', dest='index_name', required=True)
# parser_global.add_argument('--run', dest='run', default=Run.name)
parser_global.add_argument('--dataset', dest='dataset',
choices=['cast19', 'cast20','cast21'], required=True)
parser_global.add_argument('--setting', dest='setting',
choices=['raw', 'ZeCo2', 'allHistory','human'], required=True)
parser_global.add_argument('--nr_expansion_tokens', dest='nr_expansion_tokens',
default=10, type=int)
parser_global.add_argument('--add_CLSQ_tokens', dest='add_CLSQ_tokens', default=False,
action="store_true", help='Include CLS and Q token in score matching function')
# Parse experiment arguments
global_args = parser_global.parse()
global_args = add_static_args(global_args) # extend them with static values
print('args_global: ',global_args)
# For each collection in Year:
retrieval_lists = []
reranking_lists = []
if not global_args.debug:
collections = config[global_args.dataset]['collections']
mappings = config[global_args.dataset]['collection_mappings']
else:
collections = ['MSMARCO.L2.32x200k.180len.small', 'wapo.FirstP.L2.32x200k.180len']
mappings = [path_collection_mappings['marcoP'], path_collection_mappings['WAPO']]
for collection in collections:
# change collection
global_args.index_name = collection
print(f"Running on {collection}")
# Retrieve step
args_retriever = get_retriever_args(global_args)
print('args_retriever: ',args_retriever)
print(f"\n\nBefore retrieval step. Using {psutil.Process(os.getpid()).memory_info().rss / 1024 ** 2} mb RAM.\n\n ")
path_topK = retrieve_step(args_retriever)
retrieval_lists.append(path_topK)
print("Finished 1st stage ranking, results @ ",path_topK)
print(f"\n\nAfter retrieval step. Using {psutil.Process(os.getpid()).memory_info().rss / 1024 ** 2} mb RAM.\n\n ")
del args_retriever
# Rerank step
args_reranker = get_reranker_args(global_args, path_topK)
print(f"\n\nBefore reranking step. Using {psutil.Process(os.getpid()).memory_info().rss / 1024 ** 2} mb RAM.\n\n ")
path_reranked = rerank_step(args_reranker)
print(f"\n\nAfter reranking step. Using {psutil.Process(os.getpid()).memory_info().rss / 1024 ** 2} mb RAM.\n\n ")
reranking_lists.append(path_reranked)
print(f"Finished ranking for {global_args.index_name}")
del args_reranker
assert len(retrieval_lists)==len(reranking_lists)
print("\n\n********\nFinished retrieval/reranking\n********\n\n")
# Run postprocessing
args_postprocessor = Namespace()
args_postprocessor.run = reranking_lists
args_postprocessor.mapping = mappings
args_postprocessor.dataset = global_args.dataset
args_postprocessor.run_id = 'postprocessed_run'
args_postprocessor.filepath_output = os.path.join(
os.path.dirname(path_topK), f'{args_postprocessor.run_id}.trecrun'
)
args_postprocessor.topk=1000
if global_args.dataset=='cast21':
args_postprocessor.passage2doc=True
else:
args_postprocessor.passage2doc=False
if global_args.dataset=='cast20':
args_postprocessor.path_qid_mapping = path_queries['cast20']['qid_mapping']
path_processed_run = postprocess_runs(args_postprocessor)
# Run evaluation
results_dict = evaluator(filepath_ranking = path_processed_run,
filepath_qrel = config[global_args.dataset]['qrel'])
pprint(results_dict)