Given an unsorted array of integers, find the length of longest increasing subsequence.
Example:
Input: [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Note:
- There may be more than one LIS combination, it is only necessary for you to return the length.
- Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
使用dp[i]表示前i个元素中,包含nums[i]的最长上升子序列,那么: dp[i] = max(dp[j]) + 1 (其中0≤_j_<i_且_num[j]<num[i])
class Solution {
public int lengthOfLIS(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int n = nums.length;
int[] dp = new int[n];
Arrays.fill(dp, 1);
int globalMax = 1;
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if (nums[j] < nums[i]) dp[i] = Math.max(dp[i], dp[j] + 1);
}
globalMax = Math.max(globalMax, dp[i]);
}
return globalMax;
}
}