The n-queens puzzle is the problem of placing n queens on an n_×_n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
**
Example:
Input: 4
Output: [
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.
解题思路
- 回溯
- 按行遍历,然后按列遍历,找出每行应该放置的列
public class Solution {
public List<List<String>> solveNQueens(int n) {
List<List<String>> ret = new ArrayList<>();
int[] status = new int[n];
backtracking(ret, status, 0, n);
return ret;
}
/**
*
* @param ret
* @param status 记录当前遍历的每个皇后放置位置
* @param curRow
* @param n
*/
private void backtracking(List<List<String>> ret, int[] status, int curRow, int n) {
if (curRow == n) {
List<String> tmp = new ArrayList<>(n);
for (int i = 0; i < n; i++) {
StringBuilder sb = new StringBuilder();
for (int j = 0; j < n; j++) {
if (status[i] == j) {
sb.append("Q");
} else {
sb.append(".");
}
}
tmp.add(sb.toString());
}
ret.add(tmp);
return;
}
// 遍历每一列
for (int j = 0; j < n; j++) {
if (check(status, curRow, j)) {
status[curRow] = j;
backtracking(ret, status, curRow + 1, n);
status[curRow] = -1;
}
}
}
/**
* 判断是否同行同列和对角线关系
* 对角线关系为 y = x + b
* 两个点在对角线上得到 y1 - y2 = x1 - x2
*
* @param status
* @param r
* @param c
* @return
*/
private boolean check(int[] status, int r, int c) {
for (int i = 0; i < r; i++) {
if (status[i] == c || Math.abs(i - r) == Math.abs(status[i] - c)) {
return false;
}
}
return true;
}
}