forked from CrumpLab/LabJournalWebsite
-
Notifications
You must be signed in to change notification settings - Fork 1
/
SeasonalEvaluations.Rmd
346 lines (281 loc) · 15.8 KB
/
SeasonalEvaluations.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
---
title: "Seasonal Evaluations"
date: "Last updated: 12/15/2020"
output:
html_document:
toc: true
toc_float: true
collapsed: true
number_sections: false
toc_depth: 2
---
```{css, echo=FALSE}
h1 {
text-align: center;
}
```
Seasonal evaluations are quarterly internal reports that look back on the releases published by meteorological season in order to gain insights into what the most popular topics were across our programs, across media platforms, which assets performed well and which content was less popular.
If you're unsure about release or graphic names, [click here](https://docs.google.com/spreadsheets/d/1bArJV-oHTp09L4fk1vrAXzKVUX-wzr1ONmv0PGuXiwY/edit#gid=1301634659) to find a guide, under **'Graphics Directory'** tab.
***
# **Winter 2020/21**
Winter 2020/21 content is considered to be all weekly releases and graphics published between '2020WinterPackage' and '2021ReturnToCOP', inclusive.
```{r Read in Data Fall 2020, echo = FALSE, warning=TRUE, message=FALSE}
#read in tracking data from Master Tracking Google Spreadsheet
data <- read.csv('February2021TrackingData.csv')
#load pre-written evaluation functions
source("monthlyreport_functions.R")
#reformat
dataReformatted <- reformat_googlesheet(data)
dataReformatted$year <- as.numeric(dataReformatted$year)
dataReformatted$date <- as.Date(dataReformatted$date, format = "%m/%d/%Y")
#extract data for season
start_date <- as.POSIXct("2020/11/31")
end_date <- as.Date("01/01/2021", format = "%m/%d/%Y")
start_date < end_date
seasonData <- dataReformatted[which(dataReformatted$date > as.Date("11/31/2020", format = "%m/%d/%Y")),]
#read in csv of season's releases
releases <- read.csv("fall2020releases.csv")
releases <- na.omit(releases)
releases$date <- as.Date(releases$date, format="%m/%d/%Y")
require('tidyr')
releases.sep <- separate_rows(releases, graphic, sep=",")
#remove blank space from release and graphic columns
releases.sep$title <- trimws(releases.sep$title, which="both")
releases.sep$graphic <- trimws(releases.sep$graphic, which="both")
#cast date column as date
releases.sep$date <- as.Date(releases.sep$date, format="%m/%d/%Y")
write.csv(releases.sep, "fall2020releasesandgraphics.csv")
```
## Ranked Releases
```{r Ranked Releases Fall 2020, include = FALSE, echo = FALSE, warning=FALSE, message=FALSE}
releasePopularity <- rankReleases(seasonData)
#format table
library(formattable)
countedSortedReleases.formatted <- formattable(releasePopularity, align=c("r", "c", "c", "c", "c"))
#add rank column
countedSortedReleases.formatted$rank <- seq.int(nrow(countedSortedReleases.formatted))
#reorder columns
countedSortedReleases.formatted <- countedSortedReleases.formatted[,c(6,1,2,3,4,5)]
#rename columns
#names(countedSortedReleases.formatted) <- c("Rank", "Release", "Social", "Stories", "TV", "Total Hits")
```
```{r Releases Fall 2020, echo = FALSE, warning=FALSE, message=FALSE}
#merge tracking data with list of Fall 2020 releases
seasonReleasesHits <- merge(releasePopularity, releases, by.x="program.content", by.y="title", all.y=TRUE)
#reformat
seasonsReleasesByHits <- seasonReleasesHits[,c(6,1,2,3,4,5)]
seasonsReleasesByHits <- seasonsReleasesByHits[order(-seasonsReleasesByHits$total),]
names(seasonsReleasesByHits) <- c("Date Published", "Release", "Social", "Stories", "TV", "Total Hits")
#format using HTML widget
library(DT)
datatable(seasonsReleasesByHits, fillContainer=TRUE, options = list(scrollX="70px", scrollY="400px", pageLength = 10), rownames=FALSE)
```
## Ranked Graphics
```{r Ranked Graphics Fall 2020, include=FALSE}
graphicPopularity <- rankGraphics(seasonData)
#format table
library(formattable)
countedSortedGraphics.formatted <- formattable(releasePopularity, align=c("r", "c", "c", "c", "c"))
#add rank column
countedSortedGraphics.formatted$rank <- seq.int(nrow(countedSortedGraphics.formatted))
#reorder columns
countedSortedGraphics.formatted <- countedSortedGraphics.formatted[,c(6,1,2,3,4,5)]
#rename columns
names(countedSortedGraphics.formatted) <- c("Rank", "Graphic", "Social", "Stories", "TV", "Total Hits")
```
```{r Fall Graphics Fall 2020, echo=FALSE}
#merge tracking data with list of Fall 2020 Graphics
seasonGraphicsHits <- merge(graphicPopularity, releases.sep, by.x="graphic.used", by.y="graphic", all.y=TRUE)
#reformat
seasonsGraphicsByHits <- seasonGraphicsHits[,c(6,1,2,3,4,5)]
seasonsGraphicsByHits <- seasonsGraphicsByHits[order(seasonsGraphicsByHits$total, decreasing=TRUE),]
names(seasonsGraphicsByHits) <- c("Date Published", "Graphic Name", "Social", "Stories", "TV", "Total Hits")
#format using HTML widget
library(DT)
datatable(seasonsGraphicsByHits, fillContainer=TRUE, options = list(scrollX="70px", scrollY="400px", pageLength = 10), rownames=FALSE)
```
## Previous Content Used
Content usage that was tracked during the fall but was published before the fall (i.e. content that subscribers have gone back to look for).
The top three pieces of content that subscribers pulled out of the archives were: [2020DistanceEmissions](https://medialibrary.climatecentral.org/resources/travel-and-air-pollution-during-covid-19), WeatherPower (largely due to A.J Fox's ongoing sponsored segment), and [2020CO2Peak](https://medialibrary.climatecentral.org/resources/co2-and-the-climate-curve).
```{r Previous content used Fall 2020, echo = FALSE, warning=FALSE, message=FALSE}
#remove rows which have hits from current season
seasonData.sep <- separate_rows(seasonData, program.content, sep=", ")
nonSeasonReleases <- seasonData.sep[-which(seasonData.sep$program.content %in% releases$title),]
evergreen.rank <- rankReleases(nonSeasonReleases)
evergreen.rank.tidy <- evergreen.rank[-c(4),]
names(evergreen.rank.tidy) <- c("Release", "Social", "Stories", "TV", "Total Hits")
library(DT)
datatable(evergreen.rank.tidy, fillContainer=TRUE, options = list(scrollX="70px", scrollY="400px", pageLength = 10), rownames=FALSE)
```
***
# **Fall 2020**
Fall content is considered to be all weekly releases and graphics published between '2020FallPackage' and '2020SeasonalWarming', inclusive.
```{r Read in Data Fall 2020, echo = FALSE, warning=TRUE, message=FALSE}
#read in tracking data from Master Tracking Google Spreadsheet
data <- read.csv("November2020TrackingData.csv")
#load pre-written evaluation functions
source("monthlyreport_functions.R")
#reformat
dataReformatted <- reformat_googlesheet(data)
dataReformatted$year <- as.numeric(dataReformatted$year)
#extract data for season
seasonData <- dataReformatted[which(dataReformatted$month %in% c("September", "October", "November") & dataReformatted$year==2020),]
#read in csv of season's releases
releases <- read.csv("fall2020releases.csv")
releases <- na.omit(releases)
releases$date <- as.Date(releases$date, format="%m/%d/%Y")
require('tidyr')
releases.sep <- separate_rows(releases, graphic, sep=",")
#remove blank space from release and graphic columns
releases.sep$title <- trimws(releases.sep$title, which="both")
releases.sep$graphic <- trimws(releases.sep$graphic, which="both")
#cast date column as date
releases.sep$date <- as.Date(releases.sep$date, format="%m/%d/%Y")
write.csv(releases.sep, "fall2020releasesandgraphics.csv")
```
## Ranked Releases
```{r Ranked Releases Fall 2020, include = FALSE, echo = FALSE, warning=FALSE, message=FALSE}
releasePopularity <- rankReleases(seasonData)
#format table
library(formattable)
countedSortedReleases.formatted <- formattable(releasePopularity, align=c("r", "c", "c", "c", "c"))
#add rank column
countedSortedReleases.formatted$rank <- seq.int(nrow(countedSortedReleases.formatted))
#reorder columns
countedSortedReleases.formatted <- countedSortedReleases.formatted[,c(6,1,2,3,4,5)]
#rename columns
#names(countedSortedReleases.formatted) <- c("Rank", "Release", "Social", "Stories", "TV", "Total Hits")
```
```{r Releases Fall 2020, echo = FALSE, warning=FALSE, message=FALSE}
#merge tracking data with list of Fall 2020 releases
seasonReleasesHits <- merge(releasePopularity, releases, by.x="program.content", by.y="title", all.y=TRUE)
#reformat
seasonsReleasesByHits <- seasonReleasesHits[,c(6,1,2,3,4,5)]
seasonsReleasesByHits <- seasonsReleasesByHits[order(-seasonsReleasesByHits$total),]
names(seasonsReleasesByHits) <- c("Date Published", "Release", "Social", "Stories", "TV", "Total Hits")
#format using HTML widget
library(DT)
datatable(seasonsReleasesByHits, fillContainer=TRUE, options = list(scrollX="70px", scrollY="400px", pageLength = 10), rownames=FALSE)
```
## Ranked Graphics
```{r Ranked Graphics Fall 2020, include=FALSE}
graphicPopularity <- rankGraphics(seasonData)
#format table
library(formattable)
countedSortedGraphics.formatted <- formattable(releasePopularity, align=c("r", "c", "c", "c", "c"))
#add rank column
countedSortedGraphics.formatted$rank <- seq.int(nrow(countedSortedGraphics.formatted))
#reorder columns
countedSortedGraphics.formatted <- countedSortedGraphics.formatted[,c(6,1,2,3,4,5)]
#rename columns
names(countedSortedGraphics.formatted) <- c("Rank", "Graphic", "Social", "Stories", "TV", "Total Hits")
```
```{r Fall Graphics Fall 2020, echo=FALSE}
#merge tracking data with list of Fall 2020 Graphics
seasonGraphicsHits <- merge(graphicPopularity, releases.sep, by.x="graphic.used", by.y="graphic", all.y=TRUE)
#reformat
seasonsGraphicsByHits <- seasonGraphicsHits[,c(6,1,2,3,4,5)]
seasonsGraphicsByHits <- seasonsGraphicsByHits[order(seasonsGraphicsByHits$total, decreasing=TRUE),]
names(seasonsGraphicsByHits) <- c("Date Published", "Graphic Name", "Social", "Stories", "TV", "Total Hits")
#format using HTML widget
library(DT)
datatable(seasonsGraphicsByHits, fillContainer=TRUE, options = list(scrollX="70px", scrollY="400px", pageLength = 10), rownames=FALSE)
```
## Previous Content Used
Content usage that was tracked during the fall but was published before the fall (i.e. content that subscribers have gone back to look for).
The top three pieces of content that subscribers pulled out of the archives were: [2020DistanceEmissions](https://medialibrary.climatecentral.org/resources/travel-and-air-pollution-during-covid-19), WeatherPower (largely due to A.J Fox's ongoing sponsored segment), and [2020CO2Peak](https://medialibrary.climatecentral.org/resources/co2-and-the-climate-curve).
```{r Previous content used Fall 2020, echo = FALSE, warning=FALSE, message=FALSE}
#remove rows which have hits from current season
seasonData.sep <- separate_rows(seasonData, program.content, sep=", ")
nonSeasonReleases <- seasonData.sep[-which(seasonData.sep$program.content %in% releases$title),]
evergreen.rank <- rankReleases(nonSeasonReleases)
evergreen.rank.tidy <- evergreen.rank[-c(4),]
names(evergreen.rank.tidy) <- c("Release", "Social", "Stories", "TV", "Total Hits")
library(DT)
datatable(evergreen.rank.tidy, fillContainer=TRUE, options = list(scrollX="70px", scrollY="400px", pageLength = 10), rownames=FALSE)
```
***
# **Summer 2020**
Summer content is considered to be all weekly releases and graphics published between '2020FirstDayAbove' and '2020Records', inclusive.
```{r Read in Data Summer 2020, echo = FALSE, warning=FALSE, message=FALSE}
#read in tracking data from Master Tracking Google Spreadsheet
data <- read.csv("Sept2020TrackingData.csv")
#load pre-written evaluation functions
source("monthlyreport_functions.R")
#reformat
dataReformatted <- reformat_googlesheet(data)
#extract data for season
seasonData <- dataReformatted[which(dataReformatted$month %in% c("May", "June", "July", "August", "September") & dataReformatted$year==2020),]
#read in csv of season's releases
releases <- read.csv("summer2020releases.csv")
require('tidyr')
releases.sep <- separate_rows(releases, graphic, sep=",")
#remove blank space from release and graphic columns
releases.sep$title <- trimws(releases.sep$title, which="both")
releases.sep$graphic <- trimws(releases.sep$graphic, which="both")
#cast date column as date
releases.sep$date <- as.Date(releases.sep$date, format="%m/%d/%Y")
write.csv(releases.sep, "summer2020releasesandgraphics.csv")
```
## Ranked Releases
```{r Ranked Releases Summer 2020, include = FALSE, echo = FALSE, warning=FALSE, message=FALSE}
releasePopularity <- rankReleases(seasonData)
#format table
library(formattable)
countedSortedReleases.formatted <- formattable(releasePopularity, align=c("r", "c", "c", "c", "c"))
#add rank column
countedSortedReleases.formatted$rank <- seq.int(nrow(countedSortedReleases.formatted))
#reorder columns
countedSortedReleases.formatted <- countedSortedReleases.formatted[,c(6,1,2,3,4,5)]
#rename columns
names(countedSortedReleases.formatted) <- c("Rank", "Release", "Social", "Stories", "TV", "Total Hits")
```
```{r Releases Summer 2020, echo = FALSE, warning=FALSE, message=FALSE}
#merge tracking data with list of Summer 2020 releases
seasonReleasesHits <- merge(releasePopularity, releases, by.x="program.content", by.y="title", all.y=TRUE)
#reformat
seasonsReleasesByHits <- seasonReleasesHits[,c(6,1,2,3,4,5)]
names(seasonsReleasesByHits) <- c("Date Published", "Release", "Social", "Stories", "TV", "Total Hits")
#format using HTML widget
library(DT)
datatable(seasonsReleasesByHits, fillContainer=TRUE, options = list(scrollX="70px", scrollY="400px", pageLength = 10), rownames=FALSE)
```
## Ranked Graphics
```{r Ranked Graphics Summer 2020, include=FALSE}
graphicPopularity <- rankGraphics(seasonData)
#format table
library(formattable)
countedSortedGraphics.formatted <- formattable(releasePopularity, align=c("r", "c", "c", "c", "c"))
#add rank column
countedSortedGraphics.formatted$rank <- seq.int(nrow(countedSortedGraphics.formatted))
#reorder columns
countedSortedGraphics.formatted <- countedSortedGraphics.formatted[,c(6,1,2,3,4,5)]
#rename columns
names(countedSortedGraphics.formatted) <- c("Rank", "Graphic", "Social", "Stories", "TV", "Total Hits")
```
```{r Summer Graphics , echo=FALSE}
#merge tracking data with list of Summer 2020 Graphics
seasonGraphicsHits <- merge(graphicPopularity, releases.sep, by.x="graphic.used", by.y="graphic", all.y=TRUE)
#reformat
seasonsGraphicsByHits <- seasonGraphicsHits[,c(6,1,2,3,4,5)]
seasonsGraphicsByHits <- seasonsGraphicsByHits[order(seasonsGraphicsByHits$total, decreasing=TRUE),]
names(seasonsGraphicsByHits) <- c("Date Published", "Graphic Name", "Social", "Stories", "TV", "Total Hits")
#format using HTML widget
library(DT)
datatable(seasonsGraphicsByHits, fillContainer=TRUE, options = list(scrollX="70px", scrollY="400px", pageLength = 10), rownames=FALSE)
```
## Previous Content Used
Content usage that was tracked during the summer but was published before the summer (i.e. content that subscribers have gone back to look for).
**WeatherPower** was the top evergreen graphic, largely because of AJ Fox's continued sponsored segment.
After that, the top three 'Evergreen' releases were [2020DaysAbove](https://medialibrary.climatecentral.org/resources/2020-days-above-thresholds), [2020Hurricanes](https://medialibrary.climatecentral.org/resources/2020-hurricane-season) and [2019Warming](https://medialibrary.climatecentral.org/resources/earth-day-fastest-warming-cities-and-states-2019) [20202019EOYGlobalTemps](https://medialibrary.climatecentral.org/resources/2019-in-review-global-temperature-rankings), [2017SummerHeatPrepPackage ](https://medialibrary.climatecentral.org/resources/the-season-of-extreme-heat), and [2019HeatIndex](https://medialibrary.climatecentral.org/resources/climate-matters-extreme-heat-index-threatening-outdoor-sports).
```{r Previous content used Summer 2020, echo = FALSE, warning=FALSE, message=FALSE}
#remove rows which have hits from current season
seasonData.sep <- separate_rows(seasonData, program.content, sep=", ")
nonSeasonReleases <- seasonData.sep[-which(seasonData.sep$program.content %in% releases$title),]
evergreen.rank <- rankReleases(nonSeasonReleases)
evergreen.rank.tidy <- evergreen.rank[-c(2),]
names(evergreen.rank.tidy) <- c("Release", "Social", "Stories", "TV", "Total Hits")
library(DT)
datatable(evergreen.rank.tidy, fillContainer=TRUE, options = list(scrollX="70px", scrollY="400px", pageLength = 10), rownames=FALSE)
```
***