forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan.js
535 lines (472 loc) · 17.8 KB
/
gan.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Train an Auxiliary Classifier Generative Adversarial Network (ACGAN) on the
* MNIST dataset.
*
* To start the training:
*
* ```sh
* yarn
* yarn train
* ```
*
* If available, a CUDA GPU will give you a higher training speed:
*
* ```sh
* yarn
* yarn train --gpu
* ```
*
* To start the demo in the browser, do in a separate terminal:
*
* ```sh
* yarn
* yarn watch
* ```
*
* It is recommended to use tfjs-node-gpu to train the model on a CUDA-enabled
* GPU, as the convolution heavy operations run several times faster a GPU than
* on the CPU with tfjs-node.
*
* For background of ACGAN, see:
* - Augustus Odena, Christopher Olah, Jonathon Shlens. (2017) "Conditional
* image synthesis with auxiliary classifier GANs"
* https://arxiv.org/abs/1610.09585
*
* The implementation is based on:
* https://github.com/keras-team/keras/blob/master/examples/mnist_acgan.py
*/
const fs = require('fs');
const path = require('path');
const argparse = require('argparse');
const data = require('./data');
// Number of classes in the MNIST dataset.
const NUM_CLASSES = 10;
// MNIST image size.
const IMAGE_SIZE = 28;
// The value of the tf object will be set dynamically, depending on whether
// the CPU (tfjs-node) or GPU (tfjs-node-gpu) backend is used. This is why
// `let` is used in lieu of the more conventional `const` here.
let tf = require('@tensorflow/tfjs');
/**
* Build the generator part of ACGAN.
*
* The generator of ACGAN takes two inputs:
*
* 1. A random latent-space vector (the latent space is often referred to
* as "z-space" in GAN literature).
* 2. A label for the desired image category (0, 1, ..., 9).
*
* It generates one output: the generated (i.e., fake) image.
*
* @param {number} latentSize Size of the latent space.
* @returns {tf.LayersModel} The generator model.
*/
function buildGenerator(latentSize) {
tf.util.assert(
latentSize > 0 && Number.isInteger(latentSize),
`Expected latent-space size to be a positive integer, but ` +
`got ${latentSize}.`);
const cnn = tf.sequential();
// The number of units is chosen so that when the output is reshaped
// and fed through the subsequent conv2dTranspose layers, the tensor
// that comes out at the end has the exact shape that matches MNIST
// images ([28, 28, 1]).
cnn.add(tf.layers.dense(
{units: 3 * 3 * 384, inputShape: [latentSize], activation: 'relu'}));
cnn.add(tf.layers.reshape({targetShape: [3, 3, 384]}));
// Upsample from [3, 3, ...] to [7, 7, ...].
cnn.add(tf.layers.conv2dTranspose({
filters: 192,
kernelSize: 5,
strides: 1,
padding: 'valid',
activation: 'relu',
kernelInitializer: 'glorotNormal'
}));
cnn.add(tf.layers.batchNormalization());
// Upsample to [14, 14, ...].
cnn.add(tf.layers.conv2dTranspose({
filters: 96,
kernelSize: 5,
strides: 2,
padding: 'same',
activation: 'relu',
kernelInitializer: 'glorotNormal'
}));
cnn.add(tf.layers.batchNormalization());
// Upsample to [28, 28, ...].
cnn.add(tf.layers.conv2dTranspose({
filters: 1,
kernelSize: 5,
strides: 2,
padding: 'same',
activation: 'tanh',
kernelInitializer: 'glorotNormal'
}));
// Unlike most TensorFlow.js models, the generator part of an ACGAN has
// two inputs:
// 1. The latent vector that is used as the "seed" of the fake image
// generation.
// 2. A class label that controls which of the ten MNIST digit classes
// the generated fake image is meant to belong to.
// This is the z space commonly referred to in GAN papers.
const latent = tf.input({shape: [latentSize]});
// The desired label of the generated image, an integer in the interval
// [0, NUM_CLASSES).
const imageClass = tf.input({shape: [1]});
// The desired label is converted to a vector of length `latentSize`
// through embedding lookup.
const classEmbedding = tf.layers.embedding({
inputDim: NUM_CLASSES,
outputDim: latentSize,
embeddingsInitializer: 'glorotNormal'
}).apply(imageClass);
// Hadamard product between z-space and a class conditional embedding.
const h = tf.layers.multiply().apply([latent, classEmbedding]);
const fakeImage = cnn.apply(h);
return tf.model({inputs: [latent, imageClass], outputs: fakeImage});
}
/**
* Build the discriminator part of ACGAN.
*
* The discriminator model of ACGAN takes the input: an image of
* MNIST format, of shape [batchSize, 28, 28, 1].
*
* It gives two outputs:
*
* 1. A sigmoid probability score between 0 and 1, for whether the
* discriminator judges the input image to be real (close to 1)
* or fake (closer to 0).
* 2. Softmax probability scores for the 10 MNIST digit categories,
* which is the discriminator's 10-class classification result
* for the input image.
*
* @returns {tf.LayersModel} The discriminator model.
*/
function buildDiscriminator() {
const cnn = tf.sequential();
cnn.add(tf.layers.conv2d({
filters: 32,
kernelSize: 3,
padding: 'same',
strides: 2,
inputShape: [IMAGE_SIZE, IMAGE_SIZE, 1]
}));
cnn.add(tf.layers.leakyReLU({alpha: 0.2}));
cnn.add(tf.layers.dropout({rate: 0.3}));
cnn.add(tf.layers.conv2d(
{filters: 64, kernelSize: 3, padding: 'same', strides: 1}));
cnn.add(tf.layers.leakyReLU({alpha: 0.2}));
cnn.add(tf.layers.dropout({rate: 0.3}));
cnn.add(tf.layers.conv2d(
{filters: 128, kernelSize: 3, padding: 'same', strides: 2}));
cnn.add(tf.layers.leakyReLU({alpha: 0.2}));
cnn.add(tf.layers.dropout({rate: 0.3}));
cnn.add(tf.layers.conv2d(
{filters: 256, kernelSize: 3, padding: 'same', strides: 1}));
cnn.add(tf.layers.leakyReLU({alpha: 0.2}));
cnn.add(tf.layers.dropout({rate: 0.3}));
cnn.add(tf.layers.flatten());
const image = tf.input({shape: [IMAGE_SIZE, IMAGE_SIZE, 1]});
const features = cnn.apply(image);
// Unlike most TensorFlow.js models, the discriminator has two outputs.
// The 1st output is the probability score assigned by the discriminator to
// how likely the input example is a real MNIST image (as versus
// a "fake" one generated by the generator).
const realnessScore =
tf.layers.dense({units: 1, activation: 'sigmoid'}).apply(features);
// The 2nd output is the softmax probabilities assign by the discriminator
// for the 10 MNIST digit classes (0 through 9). "aux" stands for "auxiliary"
// (the namesake of ACGAN) and refers to the fact that unlike a standard GAN
// (which performs just binary real/fake classification), the discriminator
// part of ACGAN also performs multi-class classification.
const aux = tf.layers.dense({units: NUM_CLASSES, activation: 'softmax'})
.apply(features);
return tf.model({inputs: image, outputs: [realnessScore, aux]});
}
/**
* Build a combined ACGAN model.
*
* @param {number} latentSize Size of the latent vector.
* @param {tf.SymbolicTensor} imageClass Symbolic tensor for the desired image
* class. This is the other input to the generator.
* @param {tf.LayersModel} generator The generator.
* @param {tf.LayersModel} discriminator The discriminator.
* @param {tf.Optimizer} optimizer The optimizer to be used for training the
* combined model.
* @returns {tf.LayersModel} The combined ACGAN model, compiled.
*/
function buildCombinedModel(latentSize, generator, discriminator, optimizer) {
// Latent vector. This is one of the two inputs to the generator.
const latent = tf.input({shape: [latentSize]});
// Desired image class. This is the second input to the generator.
const imageClass = tf.input({shape: [1]});
// Get the symbolic tensor for fake images generated by the generator.
let fake = generator.apply([latent, imageClass]);
let aux;
// We only want to be able to train generation for the combined model.
discriminator.trainable = false;
[fake, aux] = discriminator.apply(fake);
const combined =
tf.model({inputs: [latent, imageClass], outputs: [fake, aux]});
combined.compile({
optimizer,
loss: ['binaryCrossentropy', 'sparseCategoricalCrossentropy']
});
combined.summary();
return combined;
}
// "Soft" one used for training the combined ACGAN model.
// This is an important trick in training GANs.
const SOFT_ONE = 0.95;
/**
* Train the discriminator for one step.
*
* In this step, only the weights of the discriminator are updated. The
* generator is not involved.
*
* The following steps are involved:
*
* - Slice the training features and to get batch of real data.
* - Generate a random latent-space vector and a random label vector.
* - Feed the random latent-space vector and label vector to the
* generator and let it generate a batch of generated (i.e., fake) images.
* - Concatenate the real data and fake data; train the discriminator on
* the concatenated data for one step.
* - Obtain and return the loss values.
*
* @param {tf.Tensor} xTrain A tensor that contains the features of all the
* training examples.
* @param {tf.Tensor} yTrain A tensor that contains the labels of all the
* training examples.
* @param {number} batchStart Starting index of the batch.
* @param {number} batchSize Size of the batch to draw from `xTrain` and
* `yTrain`.
* @param {number} latentSize Size of the latent space (z-space).
* @param {tf.LayersModel} generator The generator of the ACGAN.
* @param {tf.LayersModel} discriminator The discriminator of the ACGAN.
* @returns {number[]} The loss values from the one-step training as numbers.
*/
async function trainDiscriminatorOneStep(
xTrain, yTrain, batchStart, batchSize, latentSize, generator,
discriminator) {
// TODO(cais): Remove tidy() once the current memory leak issue in tfjs-node
// and tfjs-node-gpu is fixed.
const [x, y, auxY] = tf.tidy(() => {
const imageBatch = xTrain.slice(batchStart, batchSize);
const labelBatch = yTrain.slice(batchStart, batchSize).asType('float32');
// Latent vectors.
let zVectors = tf.randomUniform([batchSize, latentSize], -1, 1);
let sampledLabels =
tf.randomUniform([batchSize, 1], 0, NUM_CLASSES, 'int32')
.asType('float32');
const generatedImages =
generator.predict([zVectors, sampledLabels], {batchSize: batchSize});
const x = tf.concat([imageBatch, generatedImages], 0);
const y = tf.tidy(
() => tf.concat(
[tf.ones([batchSize, 1]).mul(SOFT_ONE), tf.zeros([batchSize, 1])]));
const auxY = tf.concat([labelBatch, sampledLabels], 0);
return [x, y, auxY];
});
const losses = await discriminator.trainOnBatch(x, [y, auxY]);
tf.dispose([x, y, auxY]);
return losses;
}
/**
* Train the combined ACGAN for one step.
*
* In this step, only the weights of the generator are updated.
*
* @param {number} batchSize Size of the fake-image batch to generate.
* @param {number} latentSize Size of the latent space (z-space).
* @param {tf.LayersModel} combined The instance of tf.LayersModel that combines
* the generator and the discriminator.
* @returns {number[]} The loss values from the combined model as numbers.
*/
async function trainCombinedModelOneStep(batchSize, latentSize, combined) {
// TODO(cais): Remove tidy() once the current memory leak issue in tfjs-node
// and tfjs-node-gpu is fixed.
const [noise, sampledLabels, trick] = tf.tidy(() => {
// Make new latent vectors.
const zVectors = tf.randomUniform([batchSize, latentSize], -1, 1);
const sampledLabels =
tf.randomUniform([batchSize, 1], 0, NUM_CLASSES, 'int32')
.asType('float32');
// We want to train the generator to trick the discriminator.
// For the generator, we want all the {fake, not-fake} labels to say
// not-fake.
const trick = tf.tidy(() => tf.ones([batchSize, 1]).mul(SOFT_ONE));
return [zVectors, sampledLabels, trick];
});
const losses =
combined.trainOnBatch([noise, sampledLabels], [trick, sampledLabels]);
tf.dispose([noise, sampledLabels, trick]);
return losses;
}
function parseArguments() {
const parser = new argparse.ArgumentParser({
description: 'TensorFlowj.js: MNIST ACGAN trainer example.',
addHelp: true
});
parser.addArgument('--gpu', {
action: 'storeTrue',
help: 'Use tfjs-node-gpu for training (required CUDA GPU)'
});
parser.addArgument(
'--epochs',
{type: 'int', defaultValue: 100, help: 'Number of training epochs.'});
parser.addArgument('--batchSize', {
type: 'int',
defaultValue: 100,
help: 'Batch size to be used during training.'
});
parser.addArgument('--latentSize', {
type: 'int',
defaultValue: 100,
help: 'Size of the latent space (z-space).'
});
parser.addArgument(
'--learningRate',
{type: 'float', defaultValue: 0.0002, help: 'Learning rate.'});
parser.addArgument('--adamBeta1', {
type: 'float',
defaultValue: 0.5,
help: 'Beta1 parameter of the ADAM optimizer.'
});
parser.addArgument('--generatorSavePath', {
type: 'string',
defaultValue: './dist/generator',
help: 'Path to which the generator model will be saved after every epoch.'
});
parser.addArgument('--logDir', {
type: 'string',
help: 'Optional log directory to which the loss values will be written.'
});
return parser.parseArgs();
}
function makeMetadata(totalEpochs, currentEpoch, completed) {
return {
totalEpochs,
currentEpoch,
completed,
lastUpdated: new Date().getTime()
}
}
async function run() {
const args = parseArguments();
// Set the value of tf depending on whether the CPU or GPU version of
// libtensorflow is used.
if (args.gpu) {
console.log('Using GPU');
tf = require('@tensorflow/tfjs-node-gpu');
} else {
console.log('Using CPU');
tf = require('@tensorflow/tfjs-node');
}
if (!fs.existsSync(path.dirname(args.generatorSavePath))) {
fs.mkdirSync(path.dirname(args.generatorSavePath));
}
const saveURL = `file://${args.generatorSavePath}`;
const metadataPath = path.join(args.generatorSavePath, 'acgan-metadata.json');
// Build the discriminator.
const discriminator = buildDiscriminator();
discriminator.compile({
optimizer: tf.train.adam(args.learningRate, args.adamBeta1),
loss: ['binaryCrossentropy', 'sparseCategoricalCrossentropy']
});
discriminator.summary();
// Build the generator.
const generator = buildGenerator(args.latentSize);
generator.summary();
const optimizer = tf.train.adam(args.learningRate, args.adamBeta1);
const combined = buildCombinedModel(
args.latentSize, generator, discriminator, optimizer);
await data.loadData();
let {images: xTrain, labels: yTrain} = data.getTrainData();
yTrain = tf.expandDims(yTrain.argMax(-1), -1);
// Save the generator model once before starting the training.
await generator.save(saveURL);
let numTensors;
let logWriter;
if (args.logDir) {
console.log(`Logging to tensorboard at logdir: ${args.logDir}`);
logWriter = tf.node.summaryFileWriter(args.logDir);
}
let step = 0;
for (let epoch = 0; epoch < args.epochs; ++epoch) {
// Write some metadata to disk at the beginning of every epoch.
fs.writeFileSync(
metadataPath,
JSON.stringify(makeMetadata(args.epochs, epoch, false)));
const tBatchBegin = tf.util.now();
const numBatches = Math.ceil(xTrain.shape[0] / args.batchSize);
for (let batch = 0; batch < numBatches; ++batch) {
const actualBatchSize = (batch + 1) * args.batchSize >= xTrain.shape[0] ?
(xTrain.shape[0] - batch * args.batchSize) :
args.batchSize;
const dLoss = await trainDiscriminatorOneStep(
xTrain, yTrain, batch * args.batchSize, actualBatchSize,
args.latentSize, generator, discriminator);
// Here we use 2 * actualBatchSize here, so that we have
// the generator optimizer over an identical number of images
// as the discriminator.
const gLoss = await trainCombinedModelOneStep(
2 * actualBatchSize, args.latentSize, combined);
console.log(
`epoch ${epoch + 1}/${args.epochs} batch ${batch + 1}/${
numBatches}: ` +
`dLoss = ${dLoss[0].toFixed(6)}, gLoss = ${gLoss[0].toFixed(6)}`);
if (logWriter != null) {
logWriter.scalar('dLoss', dLoss[0], step);
logWriter.scalar('gLoss', gLoss[0], step);
step++;
}
// Assert on no memory leak.
// TODO(cais): Remove this check once the current memory leak in
// tfjs-node and tfjs-node-gpu is fixed.
if (numTensors == null) {
numTensors = tf.memory().numTensors;
} else {
tf.util.assert(
tf.memory().numTensors === numTensors,
`Leaked ${tf.memory().numTensors - numTensors} tensors`);
}
}
await generator.save(saveURL);
console.log(
`epoch ${epoch + 1} elapsed time: ` +
`${((tf.util.now() - tBatchBegin) / 1e3).toFixed(1)} s`);
console.log(`Saved generator model to: ${saveURL}\n`);
}
// Write metadata to disk to indicate the end of the training.
fs.writeFileSync(
metadataPath,
JSON.stringify(makeMetadata(args.epochs, args.epochs, true)));
}
if (require.main === module) {
run();
}
module.exports = {
buildCombinedModel,
buildDiscriminator,
buildGenerator,
trainCombinedModelOneStep,
trainDiscriminatorOneStep
};