-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathTextProcess.py
310 lines (282 loc) · 11.8 KB
/
TextProcess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#coding: utf-8
from __future__ import division
__author__ = 'LiNing'
import re
import math
import nltk
import jieba
import jieba.analyse
import sklearn
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV
from sklearn.grid_search import ParameterGrid
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest, f_classif, chi2
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.cross_validation import StratifiedKFold
from sklearn.cross_validation import KFold
from sklearn.metrics import classification_report
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
def TextSeg(text, lag):
if lag == "eng": # 英文情况
word_list = nltk.word_tokenize(text)
elif lag == "chs": # 中文情况
## --------------------------------------------------------------------------------
# jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数,不支持windows
word_cut = jieba.cut(text, cut_all=False) # 精确模式,返回的结构是一个可迭代的genertor
word_list = list(word_cut) # genertor转化为list,每个词unicode格式
# jieba.disable_parallel() # 关闭并行分词模式
## --------------------------------------------------------------------------------
# # jieba关键词提取
# tags = jieba.analyse.extract_tags(text, topK=10)
# # tags = jieba.analyse.textrank(text, topK=10)
# print tags
## --------------------------------------------------------------------------------
else:
word_list = []
return word_list
def WordLen(lag):
if lag == "eng": # 英文情况
return 2, 15
elif lag == "chs": # 中文情况
return 1, 5
else:
return 1, 15
def MakeFeatureWordsDict(all_words_tf_dict, stopwords_set, writewords_set, lag, fea_dict_size):
## --------------------------------------------------------------------------------
words_feature = list(writewords_set)
n = len(words_feature)
assert(n<=fea_dict_size)
filterword_set = stopwords_set | writewords_set
wordlen_min, wordlen_max = WordLen(lag)
all_sorted_words_tuple_list = sorted(all_words_tf_dict.items(), key=lambda f:f[1], reverse=True)
all_sorted_words_list = list(zip(*all_sorted_words_tuple_list)[0])
# all_sorted_words_list = []
# for sorted_word, times in all_sorted_words_tuple_list:
# all_sorted_words_list.append(sorted_word)
## --------------------------------------------------------------------------------
for sorted_word in all_sorted_words_list:
if n == fea_dict_size:
break
# if not sorted_word.isdigit(): # 不是数字
if re.match(ur'^[\u4e00-\u9fa5]+$|^[a-z A-Z -]+$', sorted_word) and sorted_word not in filterword_set: # 中英文
if wordlen_min<len(sorted_word)<wordlen_max: # unicode长度
words_feature.append(sorted_word)
n += 1
print "all_words length in words_feature: ", len(words_feature)
# for word_feature in words_feature:
# print word_feature
return words_feature
class TextExtractTags(object):
# 申明相关的属性
def __init__(self, text, stopwords_set, writewords_set, topK=10):
self.text = text
self.stopwords_set = stopwords_set
self.writewords_set = writewords_set
self.topK = topK
def SelectK(self, words_dict):
if words_dict == {}:
return []
else:
## --------------------------------------------------------------------------------
words_tuple_list = sorted(words_dict.items(), key=lambda f:f[1], reverse=True)
sorted_words = list(zip(*words_tuple_list)[0])
# sorted_words = []
# for key, value in words_tuple_list:
# sorted_words.append(key)
#### 直接截断
# new_sorted_words = filter(lambda f:f not in self.stopwords_set, sorted_words)
####
new_sorted_words = filter(lambda f:f in self.writewords_set, sorted_words)
new_sorted_words.extend(filter(lambda f:f not in (self.stopwords_set | self.writewords_set), sorted_words))
## --------------------------------------------------------------------------------
tags = new_sorted_words[:self.topK]
return tags
def Tags_Words_Feature(self, words_feature):
## --------------------------------------------------------------------------------
tf_dict = {}
for word in self.text:
if tf_dict.has_key(word):
tf_dict[word] += 1
else:
if word in words_feature:
tf_dict[word] = 1
length = len(self.text)
for key in tf_dict:
tf_dict[key] /= length
return self.SelectK(tf_dict)
def Tags_Tf(self, lag):
## --------------------------------------------------------------------------------
wordlen_min, wordlen_max = WordLen(lag)
tf_dict = {}
for word in self.text:
if tf_dict.has_key(word):
tf_dict[word] += 1
else:
if re.match(ur'^[\u4e00-\u9fa5]+$|^[a-z A-Z -]+$', word) and wordlen_min<len(word)<wordlen_max:
tf_dict[word] = 1
length = len(self.text)
for key in tf_dict:
tf_dict[key] /= length
return self.SelectK(tf_dict)
def Tags_IDf(self, all_words_idf_dict, train_datas_count, lag):
## --------------------------------------------------------------------------------
wordlen_min, wordlen_max = WordLen(lag)
idf_dict = {}
words = set(self.text)
for word in words:
if re.match(ur'^[\u4e00-\u9fa5]+$|^[a-z A-Z -]+$', word) and wordlen_min<len(word)<wordlen_max:
if word in all_words_idf_dict:
idf_dict[word] = all_words_idf_dict[word]
else:
idf_dict[word] = math.log(train_datas_count)
return self.SelectK(idf_dict)
def Tags_TfIDf(self, all_words_idf_dict, train_datas_count, lag):
## --------------------------------------------------------------------------------
wordlen_min, wordlen_max = WordLen(lag)
tf_idf_dict = {}
for word in self.text:
if tf_idf_dict.has_key(word):
tf_idf_dict[word] += 1
else:
if re.match(ur'^[\u4e00-\u9fa5]+$|^[a-z A-Z -]+$', word) and wordlen_min<len(word)<wordlen_max:
tf_idf_dict[word] = 1
length = len(self.text)
for key in tf_idf_dict:
tf_idf_dict[key] /= length
if key in all_words_idf_dict:
tf_idf_dict[key] *= all_words_idf_dict[key]
else:
tf_idf_dict[key] *= math.log(train_datas_count)
return self.SelectK(tf_idf_dict)
class TextFeature(object):
# 申明相关的属性
def __init__(self, words_feature, text):
self.words_feature = words_feature
self.text = text
def TextBool(self):
bool_features = []
words = set(self.text)
for word_feature in self.words_feature:
if word_feature in words:
bool_features.append(1)
else:
bool_features.append(0)
return bool_features
def TextTf(self):
tf_features = []
length = len(self.text)
for word_feature in self.words_feature:
word_count = self.text.count(word_feature)
tf = word_count/length
tf_features.append(tf)
return tf_features
def TextIDf(self, all_words_idf_dict): # 与text无关
idf_features = []
for word_feature in self.words_feature:
idf = all_words_idf_dict[word_feature]
idf_features.append(idf)
return idf_features
def TextTfIDf(self, all_words_idf_dict):
tf_idf_features = []
length = len(self.text)
for word_feature in self.words_feature:
word_count = self.text.count(word_feature)
tf = word_count/length
idf = all_words_idf_dict[word_feature]
tf_idf = tf*idf
tf_idf_features.append(tf_idf)
return tf_idf_features
class FeatureSelector(object):
# 申明相关的属性
def __init__(self, train_features, train_class, k=1000):
self.train_features = train_features
self.train_class = train_class
self.k = k
def PCA_Selector(self):
my_selector = PCA(n_components=self.k).fit(self.train_features)
train_features = my_selector.transform(self.train_features)
return my_selector, train_features
def KBest_Selector(self):
my_selector = SelectKBest(score_func=f_classif, k=self.k).fit(self.train_features, self.train_class)
train_features = my_selector.transform(self.train_features)
return my_selector, train_features
class ClassifierTrain(object):
# 申明相关的属性
def __init__(self, train_features, train_class):
self.train_features = train_features
self.train_class = train_class
# def SVM(self):
# ## Pipeline+GridSearchCV
# parameters = [
# {
# 'pca__n_components':[10, 15, 20, 25, 30],
# 'svm__kernel':['rbf'],
# 'svm__gamma':[1e-3, 1e-2, 1e-1],
# 'svm__C':[1e-2, 1e-1, 1, 5, 10]
# },
# {
# 'pca__n_components':[10, 15, 20, 25, 30],
# 'svm__kernel':['linear'],
# 'svm__C':[1e-2, 1e-1, 1, 5, 10]
# }
# ]
# # parameters = {
# # 'pca__n_components':[10, 15, 20, 25, 30],
# # 'svm__kernel':['rbf'],
# # 'svm__gamma':[1e-3, 1e-2, 1e-1],
# # 'svm__C':[1e-2, 1e-1, 1, 5, 10]
# # }
# # print list(ParameterGrid(parameters))
# pipeline = Pipeline(
# steps = [
# ('pca', PCA()), # 'pca'对应'pca__'
# ('svm', SVC()) # 'svm'对应'svm__'
# ]
# )
# clf = GridSearchCV(
# estimator = pipeline,
# param_grid = parameters,
# cv = StratifiedKFold(self.train_class, 5),
# scoring = "accuracy",
# n_jobs = 3
# )
# clf.fit(self.train_features, self.train_class)
# best_clf = clf.best_estimator_
# return best_clf
def SVM(self):
clf = SVC()
clf.fit(self.train_features, self.train_class)
best_clf = clf
return best_clf
def LibSVM(self):
clf = LinearSVC()
clf.fit(self.train_features, self.train_class)
best_clf = clf
return best_clf
def NB(self):
clf = MultinomialNB()
clf.fit(self.train_features, self.train_class)
best_clf = clf
return best_clf
def LR(self):
clf = LogisticRegression()
clf.fit(self.train_features, self.train_class)
best_clf = clf
return best_clf
def KNN(self):
clf = KNeighborsClassifier(n_neighbors=100)
clf.fit(self.train_features, self.train_class)
best_clf = clf
return best_clf
def DT(self):
clf = DecisionTreeClassifier()
clf.fit(self.train_features, self.train_class)
best_clf = clf
return best_clf