-
Notifications
You must be signed in to change notification settings - Fork 0
/
W3B_SpaceX_Dash_App.py
105 lines (90 loc) · 5.36 KB
/
W3B_SpaceX_Dash_App.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Import required libraries
import pandas as pd
import dash
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output
import plotly.express as px
# Read the airline data into pandas dataframe
spacex_df = pd.read_csv("spacex_launch_dash.csv")
max_payload = spacex_df['Payload Mass (kg)'].max()
min_payload = spacex_df['Payload Mass (kg)'].min()
sites = spacex_df['Launch Site'].unique()
n_launches = spacex_df.shape[0]
# Create a dash application
app = dash.Dash(__name__)
# Create an app layout
app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard',
style={'textAlign': 'center', 'color': '#503D36',
'font-size': 40}),
# TASK 1: Add a dropdown list to enable Launch Site selection
# The default select value is for ALL sites
dcc.Dropdown(id='site-dropdown',
options=[
{'label': 'All Sites', 'value': 'ALL'},
{'label': sites[0], 'value': sites[0]},
{'label': sites[1], 'value': sites[1]},
{'label': sites[2], 'value': sites[2]},
{'label': sites[3], 'value': sites[3]}
],
value='ALL', # default dropdown value: all sites are selected
placeholder = 'Select a Launch Site here',
searchable=True # enable searching launch sites via keywords
),
html.Br(),
# TASK 2: Add a pie chart to show the total successful launches count for all sites
# If a specific launch site was selected, show the Success vs. Failed counts for the site
html.Div(dcc.Graph(id='success-pie-chart')),
html.Br(),
html.P("Payload range (Kg):"),
# TASK 3: Add a slider to select payload range
dcc.RangeSlider(id='payload-slider',
min = 0, max=10000, step=1000, # in Kg
value=[min_payload, max_payload],
marks={0:'0', 2500:'2500', 5000:'5000', 7500:'7500', 10000:'10000'}),
# TASK 4: Add a scatter chart to show the correlation between payload and launch success
html.Div(dcc.Graph(id='success-payload-scatter-chart')),
])
# TASK 2:
# Add a callback function for `site-dropdown` as input, `success-pie-chart` as output
# Function decorator to specify function input and output
@app.callback(Output(component_id='success-pie-chart', component_property='figure'),
Input(component_id='site-dropdown', component_property='value'))
def get_pie_chart(entered_site):
if entered_site == 'ALL':
filtered_df = spacex_df.groupby('Launch Site')['class'].sum().reset_index()
fig = px.pie(filtered_df,
values='class',
names='Launch Site',
title='Total Success Launches by Site')
return fig
else:
# return the outcomes piechart for a selected site
filtered_df2 = spacex_df[spacex_df['Launch Site']==entered_site]['class']
fig = px.pie(filtered_df2,
values=filtered_df2.value_counts().values,
names=filtered_df2.value_counts().index,
title=f'Total Success Launches for site {entered_site}')
return fig
# TASK 4:
# Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output
@app.callback(Output(component_id='success-payload-scatter-chart', component_property='figure'),
[Input(component_id='site-dropdown', component_property='value'),
Input(component_id="payload-slider", component_property="value")])
def get_scatter_plot(entered_site, slider_range):
if entered_site == 'ALL':
low, high = slider_range
mask = (spacex_df['Payload Mass (kg)'] > low) & (spacex_df['Payload Mass (kg)'] < high)
fig = px.scatter(spacex_df[mask], x='Payload Mass (kg)', y='class', color="Booster Version Category",
title='Correlation between Payload and Success for all sites')
return fig
else:
filtered_df = spacex_df[spacex_df['Launch Site']==entered_site]
low, high = slider_range
mask = (filtered_df['Payload Mass (kg)'] > low) & (filtered_df['Payload Mass (kg)'] < high)
fig = px.scatter(filtered_df[mask], x='Payload Mass (kg)', y='class', color="Booster Version Category",
title=f'Correlation between Payload and Success for {entered_site}')
return fig
# Run the app
if __name__ == '__main__':
app.run_server()