-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_gs.py
328 lines (291 loc) · 12.5 KB
/
main_gs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""
PyTorch code for SAC. Copied and modified from PyTorch code for SAC-NF (Mazoure et al., 2019): https://arxiv.org/abs/1905.06893
"""
import os
import sys
import argparse
import time
import datetime
import itertools
import random
import pickle
import glob
import gym
import numpy as np
import torch
from sac_gs import SAC
from normalized_actions import NormalizedActions
from replay_memory import ReplayMemory
import pandas as pd
try:
import pybulletgym
except:
print('No PyBullet Gym. Skipping...')
from utils import logging, get_time, print_args
from utils import save_checkpoint, load_checkpoint
from tensorboardX import SummaryWriter
parser = argparse.ArgumentParser(description='PyTorch code for SAC-NF (Mazoure et al., 2019,https://arxiv.org/abs/1905.06893)')
parser.add_argument('--env-name', default="Ant-v2",
help='name of the environment to run')
parser.add_argument('--eval', type=bool, default=True,
help='Evaluates a policy a policy every 10 episode (default:True)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor for reward (default: 0.99)')
parser.add_argument('--tau', type=float, default=0.005, metavar='G',
help='target smoothing coefficient(tau) (default: 0.005)')
parser.add_argument('--lr', type=float, default=0.0003, metavar='G',
help='learning rate (default: 0.0003)')
parser.add_argument('--num_layers', type=int, default=1,
help='number of layers (default: 1)')
parser.add_argument('--actor_lr', type=float, default=0.0003, metavar='G',
help='learning rate (default: 0.0003)')
parser.add_argument('--alpha', type=float, default=0.05, metavar='G',
help='Temperature parameter alpha determines the relative importance of the entropy term against the reward (default: 0.2)')
parser.add_argument('--automatic_entropy_tuning', type=bool, default=False, metavar='G',
help='Temperature parameter alpha automaically adjusted.')
#parser.add_argument('--seed', type=int, default=456, metavar='N',
# help='random seed (default: 456)')
parser.add_argument('--batch_size', type=int, default=256, metavar='N',
help='batch size (default: 256)')
parser.add_argument('--num_steps', type=int, default=3000001, metavar='N',
help='maximum number of steps (default: 1000000)')
parser.add_argument('--hidden_size', type=int, default=256, metavar='N',
help='hidden size (default: 256)')
parser.add_argument('--updates_per_step', type=int, default=1, metavar='N',
help='model updates per simulator step (default: 1)')
parser.add_argument('--start_steps', type=int, default=10000, metavar='N',
help='Steps sampling random actions (default: 10000)')
parser.add_argument('--target_update_interval', type=int, default=1, metavar='N',
help='Value target update per no. of updates per step (default: 1)')
parser.add_argument('--hadamard',type=int,default=1)
parser.add_argument('--replay_size', type=int, default=1000000, metavar='N',
help='size of replay buffer (default: 10000000)')
parser.add_argument('--cuda', action="store_true",
help='run on CUDA (default: False)')
parser.add_argument('--cache', default='experiments', type=str)
parser.add_argument('--experiment', default=None, help='name of experiment')
parser.add_argument('--nb_evals', type=int, default=10,
help='nb of evaluations')
parser.add_argument('--resume', dest='resume', action='store_true', default=True,
help='flag to resume the experiments')
parser.add_argument('--no-resume', dest='resume', action='store_false', default=True,
help='flag to resume the experiments')
parser.add_argument('--exp-num', type=int, default=0,
help='experiment number')
# seed
parser.add_argument('--seed', type=int, default=456, metavar='N',
help='random seed (default: 456)')
# log
parser.add_argument('--log-interval', type=int, default=1000,
help='log print-out interval (step)')
parser.add_argument('--eval-interval', type=int, default=10000,
help='eval interval (step)')
parser.add_argument('--ckpt-interval', type=int, default=5000,
help='checkpoint interval (step)')
args = parser.parse_args()
args.hadamard = bool(args.hadamard)
# set env
if args.env_name == 'Humanoidrllab':
from rllab.envs.mujoco.humanoid_env import HumanoidEnv
from rllab.envs.normalized_env import normalize
env = normalize(HumanoidEnv())
max_episode_steps = float('inf')
if args.seed >= 0:
global seed_
seed_ = args.seed
else:
env = gym.make(args.env_name)
max_episode_steps=env._max_episode_steps
env=NormalizedActions(env)
if args.seed >= 0:
env.seed(args.seed)
if args.seed >= 0:
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.random.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# set args
args.num_actions = env.action_space.shape[0]
args.max_action = env.action_space.high
args.min_action = env.action_space.low
# set cache folder
if args.cache is None:
args.cache = 'experiments'
if args.experiment is None:
args.experiment = '-'.join(['sac',
'mnh{}'.format(args.num_layers),
'sstep{}'.format(args.start_steps),
'a{}'.format(args.alpha),
'mlr{}'.format(args.lr),
'seed{}'.format(args.seed),
'exp{}'.format(args.exp_num),
])
args.path = os.path.join(args.cache, args.experiment)
if args.resume:
listing = glob.glob(args.path+'-19*') + glob.glob(args.path+'-20*')
if len(listing) == 0:
args.path = '{}-{}'.format(args.path, get_time())
else:
path_sorted = sorted(listing, key=lambda x: datetime.datetime.strptime(x, args.path+'-%y%m%d-%H:%M:%S'))
args.path = path_sorted[-1]
pass
else:
args.path = '{}-{}'.format(args.path, get_time())
os.system('mkdir -p {}'.format(args.path))
# print args
logging(str(args), path=args.path)
# init tensorboard
writer = SummaryWriter(args.path)
# print config
configuration_setup='SAC'
configuration_setup+='\n'
configuration_setup+=print_args(args)
#for arg in vars(args):
# configuration_setup+=' {} : {}'.format(str(arg),str(getattr(args, arg)))
# configuration_setup+='\n'
logging(configuration_setup, path=args.path)
# init sac
agent = SAC(env.observation_space.shape[0], env.action_space, args)
logging("----------------------------------------", path=args.path)
logging(str(agent.critic), path=args.path)
logging("----------------------------------------", path=args.path)
logging(str(agent.policy), path=args.path)
logging("----------------------------------------", path=args.path)
# memory
memory = ReplayMemory(args.replay_size)
# resume
args.start_episode = 1
args.offset_time = 0 # elapsed
args.total_numsteps = 0
args.updates = 0
args.eval_steps = 0
args.ckpt_steps = 0
agent.load_model(args)
memory.load(os.path.join(args.path, 'replay_memory'), 'pkl')
# Training Loop
total_numsteps = args.total_numsteps # 0
updates = args.updates # 0
eval_steps = args.eval_steps # 0
ckpt_steps = args.ckpt_steps # 0
start_episode = args.start_episode # 1
offset_time = args.offset_time # 0
start_time = time.time()
if 'dataframe' in args:
df = args.dataframe
else:
df = pd.DataFrame(columns=["total_steps", "score_eval", "time_so_far"])
for i_episode in itertools.count(start_episode):
episode_reward = 0
episode_steps = 0
done = False
state = env.reset()
while not done:
if args.start_steps > total_numsteps:
action = np.random.uniform(env.action_space.low,env.action_space.high,env.action_space.shape[0]) # Sample random action
else:
action = agent.select_action(state) # Sample action from policy
if len(memory) > args.start_steps:
# Number of updates per step in environment
for i in range(args.updates_per_step):
# Update parameters of all the networks
(critic_1_loss, critic_2_loss,
policy_loss,
_, _,
policy_info,
)= agent.update_parameters(memory, args.batch_size, updates)
updates += 1
# log
if updates % args.log_interval == 0:
logging("Episode: {}"
", update: {}"
", critic_1 loss: {:.3f}"
", critic_2 loss: {:.3f}"
.format(
i_episode,
updates,
critic_1_loss,
critic_2_loss,
), path=args.path)
writer.add_scalar('train/critic_1/loss/update', critic_1_loss, updates)
writer.add_scalar('train/critic_2/loss/update', critic_2_loss, updates)
else:
pass
next_state, reward, done, _ = env.step(action) # Step
episode_steps += 1
total_numsteps += 1
eval_steps += 1
ckpt_steps += 1
episode_reward += reward
# Ignore the "done" signal if it comes from hitting the time horizon.
# (https://github.com/openai/spinningup/blob/master/spinup/algos/sac/sac.py)
mask = 1 if episode_steps == max_episode_steps else float(not done)
memory.push(state, action, reward, next_state, mask) # Append transition to memory
state = next_state
elapsed = round((time.time() - start_time + offset_time),2)
logging("Episode: {}"
", time (sec): {}"
", total numsteps: {}"
", episode steps: {}"
", reward: {}"
.format(
i_episode,
elapsed,
total_numsteps,
episode_steps,
round(episode_reward, 2),
), path=args.path)
writer.add_scalar('train/ep_reward/episode', episode_reward, i_episode)
writer.add_scalar('train/ep_reward/step', episode_reward, total_numsteps)
# evaluation
if eval_steps>=args.eval_interval or total_numsteps > args.num_steps:
logging('evaluation time', path=args.path)
r=[]
for _ in range(args.nb_evals):
state = env.reset()
episode_reward = 0
done = False
while not done:
action = agent.select_action(state, eval=True)
next_state, reward, done, _ = env.step(action)
episode_reward += reward
state = next_state
r.append(episode_reward)
mean_reward=np.mean(r)
# add to data frame
res = {"total_steps": total_numsteps,
"score_eval": mean_reward,
"time_so_far": round((time.time() - start_time),2)}
df = df.append(res, ignore_index=True)
# add to log
logging("----------------------------------------", path=args.path)
logging("Test Episode: {}, mean reward: {}, ep reward: {}"
.format(
i_episode, round(mean_reward, 2), round(episode_reward, 2),
), path=args.path)
logging("----------------------------------------", path=args.path)
writer.add_scalar('test/ep_reward/mean/step', mean_reward, total_numsteps)
writer.add_scalar('test/ep_reward/episode/step', episode_reward, total_numsteps)
# writer
writer.flush()
# reset count
eval_steps%=args.eval_interval
if ckpt_steps>=args.ckpt_interval and args.ckpt_interval > 0:
training_info = {
'start_episode': i_episode+1,
'offset_time': round((time.time() - start_time + offset_time),2),
'total_numsteps': total_numsteps,
'updates': updates,
'eval_steps': eval_steps,
'ckpt_steps': ckpt_steps,
'dataframe': df,
}
agent.save_model(training_info)
memory.save(os.path.join(args.path, 'replay_memory'), 'pkl')
ckpt_steps%=args.ckpt_interval
if total_numsteps > args.num_steps:
break
env.close()