-
Notifications
You must be signed in to change notification settings - Fork 0
/
recursive_art.txt
207 lines (166 loc) · 8.49 KB
/
recursive_art.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
Help on module recursive_art:
NAME
recursive_art - ComputationalArt project for Software Design Spring 2020
DESCRIPTION
@author: Lilo Heinrich
FUNCTIONS
build_random_function(min_depth, max_depth)
Builds a random function of depth at least min_depth and at most max_depth.
Args:
min_depth: the minimum depth of the random function
max_depth: the maximum depth of the random function
Returns:
The randomly generated function represented as both a lambda and
as a nested list.
build_random_function_helper(depth)
Helper function which recurses to build a random function.
Args:
depth: the depth of the random function
Returns:
The randomly generated function represented both as a lamda and
as a nested list.
color_map(val)
Maps input value between -1 and 1 to an integer 0-255,
suitable for use as an RGB color code.
Args:
val: value to remap, must be a float in the interval [-1, 1]
Returns:
An integer in the interval [0,255]
Examples:
>>> color_map(-1.0)
0
>>> color_map(1.0)
255
>>> color_map(0.0)
127
>>> color_map(0.5)
191
evaluate_random_function(f, x, y, lambdas)
Evaluate the random function f with inputs x,y.
The representation of the function f is defined in the assignment write-up.
Args:
f: function to evaluate as either the list and lambda form
x: the value of x to be used to evaluate the function
y: the value of y to be used to evaluate the function
lambdas: boolean whether to use lambda or list form of functions
Returns:
The function value
Examples:
>>> evaluate_random_function(['x'],-0.5, 0.75, False)
-0.5
>>> evaluate_random_function(['y'],0.1,0.02, False)
0.02
>>> evaluate_random_function(['-y'],0.5,1.0, False)
-1.0
>>> evaluate_random_function(['prod'],0.25,0.5, False)
0.125
>>> evaluate_random_function((lambda x,y: (x+y)/2),0.25,0.5, True)
0.375
generate_art(filename='output/myart', min_depth=7, max_depth=9, x_size=350, y_size=350, write_funcs=True, func_filename='output/myfunc')
Generate computational art and save as an image file. Optionally save
the corresponding function file.
Args:
filename: optional arg filename for image (default: "myart")
min_depth, max_depth: optional args to set function depth (default: [7, 9])
lambdas: optional arg whether to use lambda functions (default: False)
x_size, y_size: optional args to set image dimensions (default: 350)
write_funcs: optional arg to print out functions in string format
func_filename: optional arg filename for function (default: "myfunc")
generate_multi_art(filename='output/myart', min_depth=7, max_depth=9, x_size=350, y_size=350, write_funcs=True, func_filename='output/myfunc', num_images=1, index=0)
Generate multiple computational art and save all as sequential image files.
Args:
filename: optional arg filename for image (default: "myart")
min_depth, max_depth: optional args to set function depth (default: [7, 9])
x_size, y_size: optional args to set image dimensions (default: 350)
write_funcs: optional arg to print out functions in string format,
default is True because they are useful
func_filename: optional arg filename for function (default: "myfunc")
num_images: optional arg how many images to generate, (default: 1)
index: starting index to label images from, (default: 0)
make_art(functions, filename, lambdas, x_size=350, y_size=350)
Generate computational art from functions and save as an image file. Can
specify the input functions, including ones that were already generated and
recorded, to recreate images.
Args:
functions: the array of three sets of functions to recreate the image from
filename: optional arg string filename for image (default: "recreated")
lambdas: optional arg whether to use lambda functions (default: False)
x_size, y_size: optional args to set image dimensions (default: 350)
parse_line(line)
Takes in one line as a string from a function file, parses it into tokens,
and reconstructs the original nested list using a helper function.
Args:
line: a string of one line of a function file
Returns:
list: the nested list version of line
parse_line_helper(arr, tok)
Modifies the nested list that is referenced through the parameter arr to
repopulate the nested list with the tokens given using recursive backtracking.
Does not return anything, instead modifying sections of the tree through arr.
Args:
arr: the array of the level on the tree, starting at the top and moving down
tok: an array of tokens such as 'avg' which represent the building block functions
read_func(filename='output/myfunc', index=0)
Reads in lines from a function file, returning the nested list
representation of one function.
Args:
filename: optional arg filename to read from (default: "myfunc")
index: the number added to the filename (default: 0)
Returns:
functions: array of nested list representation of three functions
regenerate_art(filename='output/recreated', x_size=350, y_size=350, func_filename='output/myfunc', index=0)
Generate computational art from text file of the nested list representation
of functions and save as an image file. Can specify the input functions,
including ones that were already generated and recorded, to recreate images.
Args:
functions: the array of three sets of functions to recreate the image from
filename: optional arg string filename for image (default: "recreated")
x_size, y_size: optional args to set image dimensions (default: 350)
func_filename: optional arg filename to read from (default: "myfunc")
index: the number added to the filename (default: 0)
remap_interval(val, in_start, in_end, out_start, out_end)
Remap a value from one interval to another.
Given an input value in the interval [input_interval_start,
input_interval_end], return an output value scaled to fall within
the output interval [output_interval_start, output_interval_end].
Args:
val: the value to remap
in_start: start of the interval that contains all possible values for val
in_end: end of the interval that contains all possible values for val
out_start: start of the interval that contains all possible output values
out_end: end of the interval that contains all possible output values
Returns:
The value remapped from the input to the output interval
Examples:
>>> remap_interval(0.5, 0, 1, 0, 10)
5.0
>>> remap_interval(5, 4, 6, 0, 2)
1.0
>>> remap_interval(5, 4, 6, 1, 2)
1.5
>>> remap_interval(127.5, 0, 255, 0, 1)
0.5
test_image(filename, x_size=350, y_size=350)
Generate a test image with random pixels and save as an image file.
Args:
filename: string filename for image (should be .png)
x_size, y_size: optional args to set image dimensions (default: 350)
write_func(functions, filename='output/myfunc')
Writes the functions given as strings into a text file.
Args:
functions: the functions, in terms of an array of them in nested list format
filename: the file name under which to save the functions (default: "myfunc")
DATA
def_art_name = 'output/myart'
def_func_name = 'output/myfunc'
def_index = 0
def_max_depth = 9
def_min_depth = 7
def_num_images = 1
def_rep_name = 'output/recreated'
def_save = True
def_x_size = 350
def_y_size = 350
funcs = [('prod', <function <lambda>>), ('avg', <function <lambda>>), ...
FILE
/home/lilo/SoftwareDesign/Projects/ComputationalArt/recursive_art.py