-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloadmodel.py
28 lines (22 loc) · 1.08 KB
/
loadmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from tensorflow.keras.utils import CustomObjectScope
from tensorflow.keras.models import load_model
from pathlib import Path
from keras import backend as K # Estrutura de manipulação de tensores simbólicos
""" IoU """
def iou(y_true, y_pred, smooth=1):
intersection = K.sum(K.abs(y_true * y_pred), axis=[1,2,3])
union = K.sum(y_true,[1,2,3])+K.sum(y_pred,[1,2,3])-intersection
iou = K.mean((intersection + smooth) / (union + smooth), axis=0) # Média de um tensor, ao longo do eixo especificado
return iou
""" Dice Coefficient """
def dice_coef(y_true, y_pred, smooth=1):
intersection = K.sum(y_true * y_pred, axis=[1,2,3])
union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3])
return K.mean( (2. * intersection + smooth) / (union + smooth), axis=0)
""" Dice Coefficient Loss """
def dice_coef_loss(y_true, y_pred):
return 1 - dice_coef(y_true, y_pred)
scope = {'iou': iou, 'dice_coef': dice_coef, 'dice_coef_loss': dice_coef_loss}
path_model = 'data/model/lstm_model_yangon.keras'
with CustomObjectScope(scope):
modelo = load_model(Path(path_model))