forked from McCampy/DFS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Sports_Reference_Boxscore_Scrape.py
129 lines (109 loc) · 5.37 KB
/
Sports_Reference_Boxscore_Scrape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
## Our file to write web-scraping functions for a variety of sites that provide NFL statistics.
import requests # pip install requests
import pandas as pd
from bs4 import BeautifulSoup as bs
import os
import statistics as stat
from functools import reduce
def scrape_boxscore(date, home_id, away_id):
"""Scrapes the basketball_reference website for daily boxscores of NBA data. Parameters are:
date in MM-DD-YYYY format (01/05/2021 would be 01052021,
basket-reference ID of the home team,
basket-reference ID of the away team."""
# Sets up url to scrape and gets data for home and away boxscores
date_triple = date.split('-')
month = date_triple[0]
day = date_triple[1]
year = date_triple[2]
url = 'https://www.basketball-reference.com/boxscores/' + year + month + day + '0' + home_id + '.html'
# basic boxscore - away
df_away = pd.read_html(url)[0]
df_away = pd.concat([df_away['Unnamed: 0_level_0'], df_away['Basic Box Score Stats']], axis=1, sort=False)
#advanced boxscore - away
df_away_adv = pd.read_html(url)[7]
# clean up advanced boxscore - away
df_away_adv1 = pd.concat([df_away_adv['Unnamed: 0_level_0'],df_away_adv['Advanced Box Score Stats']], axis=1, sort=False)
df_away_adv = df_away_adv1.drop(['Starters','MP'],axis=1)
# basic boxscore - home
df_home = pd.read_html(url)[8]
df_home = pd.concat([df_home['Unnamed: 0_level_0'], df_home['Basic Box Score Stats']], axis=1, sort=False)
# advanced boxscore - home
df_home_adv = pd.read_html(url)[15]
# clean up advanced boxscore - home
df_home_adv1 = pd.concat([df_home_adv['Unnamed: 0_level_0'],df_home_adv['Advanced Box Score Stats']], axis=1, sort=False)
df_home_adv = df_home_adv1.drop(['Starters','MP'],axis=1)
# merge basic and advanced boxscores
df_away_all = pd.concat([df_away, df_away_adv], axis=1, sort=False)
df_home_all = pd.concat([df_home, df_home_adv], axis=1, sort=False)
df_list = [df_away_all, df_home_all]
ids = [away_id, home_id]
for home_away in range(2):
df = df_list[home_away]
# Deletes unwanted rows and joins 2 sub-dataframes into a single dataframe
rows = list(df.index.values)
last_row = rows[len(rows) - 1]
df = df.drop([5, last_row])
# Creates and adds a "Starter" variable (1 if starter, 0 if reserve)
starter = [0] * df.shape[0]
for i in range(5):
starter[i] = 1
df.insert(1, 'Status', starter)
# Creates and adds a "Team" (Team ID) and "Home" (Home team or Away team)
home = [home_away] * df.shape[0]
team = [ids[home_away]] * df.shape[0]
df.insert(1, 'Team', team)
df.insert(2, 'Home', home)
# Changes "MP" time format from string '00:00' to float 0.0.
# Did not play will appear as a 2 in staatus column. Did not dress willappear as 3
rows = list(df.index.values)
for i in rows:
if df['MP'][i] == 'Did Not Play':
df['Status'][i] = 2
elif df['MP'][i] == 'Did Not Dress':
df['Status'][i] = 3
else:
col_index = df['MP'][i].find(':')
df['MP'][i] = int(df['MP'][i][:col_index]) + int(df['MP'][i][(col_index+1):])/60
# Replace Did not play and did not dress with zeros
df = df.replace('Did Not Play', 0)
df = df.replace('Did Not Dress',0)
# Changes values in the "+/-" column from strings to integers
rows = list(df.index.values)
for i in rows:
if df['+/-'][i] == '0':
df['+/-'][i] = 0
elif df['+/-'][i] == 0:
df['+/-'][i] = 0
elif df['+/-'][i][0] == '+':
df['+/-'][i] = int(df['+/-'][i][1:])
else:
df['+/-'][i] = -1 * int(df['+/-'][i][1:])
# Drops any column that relates to efficiency stats
df.drop(['FG%', '3P%', 'FT%'], inplace=True, axis=1)
# Add fantasy points column
fp = (df["PTS"].astype(float) + (1.2*df["TRB"].astype(float)) + (1.5*df["AST"].astype(float)) + (3*df["STL"].astype(float)) + (3*df["BLK"].astype(float)) - df["TOV"].astype(float))
df.insert(4, 'FPTS', fp)
# Add Positions
dfnames = pd.read_csv(r'/Users/jacobplata/Desktop/pp/NBA_Name-Pos.csv')
dfs = [df, dfnames]
df_final = reduce(lambda left,right: pd.merge(left,right,on='Starters'), dfs)
pos = df_final["Pos"]
df.insert(4, 'Pos', pos)
print(df)
boxscore_dir = r'/Users/jacobplata/Desktop/pp'
dates = os.listdir(boxscore_dir)
if date not in dates:
os.mkdir(boxscore_dir + '/' + date)
games = os.listdir(boxscore_dir + '/' + date)
game_file = away_id + '_' + home_id + '.csv'
if game_file not in games or home_away == 1:
with open(boxscore_dir + '/' + date + '/' + away_id + '_' + home_id + '.csv', 'a', encoding="utf-8") as f:
if home_away == 0:
df.to_csv(f, header=True, index=False)
else:
df.to_csv(f, header=False, index=False)
def scrape_all_boxscores(month):
"""Scrapes all the boxscore data from a single month in the NBA and stores the boxscores
in folders by date (MONTH-DAY-YEAR) and
as a csv file create as such: HOMEID_AWAYID.csv"""
pass