-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnaive.py
111 lines (96 loc) · 3.5 KB
/
naive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 28 20:30:01 2018
@author: Li Denghao
"""
# from random import shuffle
import numpy as np
import torch
# import xlrd
from torch.utils.data import DataLoader
from models import EEGnaive
from datasets import EEG500ms
CUDA = 1
LR = 0.0001
GPU = 7
EPOCHS = 5
PARA = 32
# Parameters
params = {'batch_size': PARA,
'shuffle': True,
'num_workers': 8}
with open('groups.txt') as f:
validation = [line[:-1].split(' ') for line in f.readlines()]
training = ['%03d'%(x+1) for x in range(50)]
def adjust_learning_rate(optimizer, epoch, initial_lr=LR):
'''Sets the learning rate to the initial LR decayed by 10 every 10 epochs'''
lr = initial_lr * (0.1 ** (epoch // 10))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Datasets
training_set = EEG500ms(test_IDs=training, max_sample_num=20000)
t_len = len(training_set)
# Generators
training_generator = DataLoader(training_set, **params)
# Network
if CUDA:
eegnet = EEGnaive(GPU).cuda(GPU)
else:
eegnet = EEGnaive()
loss_func = torch.nn.MSELoss()
optimizer = torch.optim.Adam(eegnet.parameters(), lr=LR)
# Training process
for epoch in range(EPOCHS):
adjust_learning_rate(optimizer, epoch)
# if epoch % 5 == 4:
if True:
total_loss = 0
for local_batch, local_f, target in training_generator:
if CUDA:
local_batch = local_batch.cuda(GPU)
local_f = local_f.cuda(GPU)
target = target.cuda(GPU)
output = eegnet(local_batch, local_f)
loss = loss_func(output, target)
total_loss += loss.data.item()/t_len
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradient
# print('training done')
# # Validation process
# val_loss = 0
# for val_batch, val_f, target in validation_generator:
# if CUDA:
# val_batch = val_batch.cuda(GPU)
# val_f = val_f.cuda(GPU)
# target = target.cuda(GPU)
# output = eegnet(val_batch, val_f)
# loss = loss_func(output, target)
# val_loss += loss.data.item()/v_len
# print('epoch %3d | train loss: %2.3f | val loss: %2.3f % (epoch, total_loss, val_loss))
print('epoch %3d | train loss: %2.3f ' % (epoch, total_loss))
if epoch == EPOCHS-1:
data = np.zeros((t_len, 100))
i = 0
eegnet.eval()
for local_batch, local_f, target in training_generator:
if CUDA:
local_batch = local_batch.cuda(GPU)
local_f = local_f.cuda(GPU)
output = eegnet(local_batch, local_f)
if CUDA:
output = output.cpu()
data[i*PARA:i*PARA+PARA, :50] = output.detach().numpy()
data[i*PARA:i*PARA+PARA, 50:] = target
i += 1
np.save('out.npy', data)
torch.save(eegnet.state_dict(), 'naive.pkl')
# else:
# for local_batch in training_generator:
# if CUDA:
# local_batch = local_batch.cuda(GPU)
# output, mu, logvar = eegnet(local_batch)
# loss = loss_func(output, local_batch, mu, logvar)
# optimizer.zero_grad() # clear gradients for this training step
# loss.backward() # backpropagation, compute gradients
# optimizer.step() # apply gradients