Skip to content

Latest commit

 

History

History
447 lines (344 loc) · 13.9 KB

examples.md

File metadata and controls

447 lines (344 loc) · 13.9 KB

Examples

Mel & MFCC

Mel spectrogram and Mel-frequency cepstral coefficients

import numpy as np
import audioflux as af

import matplotlib.pyplot as plt
from audioflux.display import fill_spec

# Get a 220Hz's audio file path
sample_path = af.utils.sample_path('220')

# Read audio data and sample rate
audio_arr, sr = af.read(sample_path)

# Extract mel spectrogram
spec_arr, mel_fre_band_arr = af.mel_spectrogram(audio_arr, num=128, radix2_exp=12, samplate=sr)
spec_arr = np.abs(spec_arr)

# Extract mfcc
mfcc_arr, _ = af.mfcc(audio_arr, cc_num=13, mel_num=128, radix2_exp=12, samplate=sr)

# Display
audio_len = audio_arr.shape[-1]
# calculate x/y-coords
x_coords = np.linspace(0, audio_len / sr, spec_arr.shape[-1] + 1)
y_coords = np.insert(mel_fre_band_arr, 0, 0)
fig, ax = plt.subplots()
img = fill_spec(spec_arr, axes=ax,
                x_coords=x_coords, y_coords=y_coords,
                x_axis='time', y_axis='log',
                title='Mel Spectrogram')
fig.colorbar(img, ax=ax)

fig, ax = plt.subplots()
img = fill_spec(mfcc_arr, axes=ax,
                x_coords=x_coords, x_axis='time',
                title='MFCC')
fig.colorbar(img, ax=ax)

plt.show()

CWT & Synchrosqueezing

Continuous Wavelet Transform spectrogram and its corresponding synchrosqueezing reassignment spectrogram

import numpy as np
import audioflux as af
from audioflux.type import SpectralFilterBankScaleType, WaveletContinueType
from audioflux.utils import note_to_hz

import matplotlib.pyplot as plt
from audioflux.display import fill_spec

# Get a 220Hz's audio file path
sample_path = af.utils.sample_path('220')

# Read audio data and sample rate
audio_arr, sr = af.read(sample_path)
audio_arr = audio_arr[..., :4096]

cwt_obj = af.CWT(num=84, radix2_exp=12, samplate=sr, low_fre=note_to_hz('C1'),
                 bin_per_octave=12, wavelet_type=WaveletContinueType.MORSE,
                 scale_type=SpectralFilterBankScaleType.OCTAVE)

cwt_spec_arr = cwt_obj.cwt(audio_arr)

synsq_obj = af.Synsq(num=cwt_obj.num,
                     radix2_exp=cwt_obj.radix2_exp,
                     samplate=cwt_obj.samplate)

synsq_arr = synsq_obj.synsq(cwt_spec_arr,
                            filter_bank_type=cwt_obj.scale_type,
                            fre_arr=cwt_obj.get_fre_band_arr())

# Show CWT
fig, ax = plt.subplots(figsize=(7, 4))
img = fill_spec(np.abs(cwt_spec_arr), axes=ax,
                x_coords=cwt_obj.x_coords(),
                y_coords=cwt_obj.y_coords(),
                x_axis='time', y_axis='log',
                title='CWT')
fig.colorbar(img, ax=ax)
# Show Synsq
fig, ax = plt.subplots(figsize=(7, 4))
img = fill_spec(np.abs(synsq_arr), axes=ax,
                x_coords=cwt_obj.x_coords(),
                y_coords=cwt_obj.y_coords(),
                x_axis='time', y_axis='log',
                title='Synsq')
fig.colorbar(img, ax=ax)

plt.show()

CQT & Chroma

Constant-Q Transform spectrogram and cqt_chroma

import numpy as np
import audioflux as af

import matplotlib.pyplot as plt
from audioflux.display import fill_spec

# Read audio data and sample rate
audio_arr, sr = af.read(af.utils.sample_path('guitar_chord2'))

# Create CQT object
cqt_obj = af.CQT(num=84, samplate=sr)

# Extract CQT and Chroma_cqt
cqt_arr = cqt_obj.cqt(audio_arr)
chroma_cqt_arr = cqt_obj.chroma(cqt_arr)

# Display
audio_len = audio_arr.shape[-1]

# Display CQT
fig, ax = plt.subplots()
img = fill_spec(np.abs(cqt_arr), axes=ax,
                x_coords=cqt_obj.x_coords(audio_len), x_axis='time',
                y_coords=cqt_obj.y_coords(), y_axis='log',
                title='CQT')
fig.colorbar(img, ax=ax)

# Display Chroma_CQT
fig, ax = plt.subplots()
img = fill_spec(chroma_cqt_arr, axes=ax,
                x_coords=cqt_obj.x_coords(audio_len),
                x_axis='time', y_axis='chroma',
                title='Chroma-CQT')
fig.colorbar(img, ax=ax)

plt.show()

Different Wavelet Type

Compare morlet, morese, paul and bump Wavelet type spectrogram

import numpy as np
import audioflux as af
from audioflux.type import SpectralFilterBankScaleType, WaveletContinueType
from audioflux.utils import note_to_hz

import matplotlib.pyplot as plt
from audioflux.display import fill_spec, fill_wave

# Read audio data and sample rate
audio_arr, sr = af.read(af.utils.sample_path('220'))
audio_arr = audio_arr[..., :4096]

# Create CWT object of Octave and Extract spectrogram
obj = af.CWT(num=84, radix2_exp=12, samplate=sr,
             low_fre=note_to_hz('C1'), bin_per_octave=12,
             wavelet_type=WaveletContinueType.MORLET,
             scale_type=SpectralFilterBankScaleType.OCTAVE)
morlet_spec_arr = obj.cwt(audio_arr)
morlet_spec_arr = np.abs(morlet_spec_arr)

obj = af.CWT(num=84, radix2_exp=12, samplate=sr,
             low_fre=note_to_hz('C1'), bin_per_octave=12,
             wavelet_type=WaveletContinueType.MORSE,
             scale_type=SpectralFilterBankScaleType.OCTAVE)
morse_spec_arr = obj.cwt(audio_arr)
morse_spec_arr = np.abs(morse_spec_arr)

obj = af.CWT(num=84, radix2_exp=12, samplate=sr,
             low_fre=note_to_hz('C1'), bin_per_octave=12,
             wavelet_type=WaveletContinueType.PAUL,
             scale_type=SpectralFilterBankScaleType.OCTAVE)
paul_spec_arr = obj.cwt(audio_arr)
paul_spec_arr = np.abs(paul_spec_arr)

obj = af.CWT(num=84, radix2_exp=12, samplate=sr,
             low_fre=note_to_hz('C1'), bin_per_octave=12,
             wavelet_type=WaveletContinueType.BUMP,
             scale_type=SpectralFilterBankScaleType.OCTAVE)
bump_spec_arr = obj.cwt(audio_arr)
bump_spec_arr = np.abs(bump_spec_arr)

# Display
fig, ax = plt.subplots(nrows=5, figsize=(8, 10), sharex=True)
fill_wave(audio_arr, samplate=sr, axes=ax[0])

fill_spec(morlet_spec_arr, axes=ax[1],
          x_coords=obj.x_coords(), y_coords=obj.y_coords(),
          y_axis='log',
          title='CWT-Octave MORLET Spectrogram')

fill_spec(morse_spec_arr, axes=ax[2],
          x_coords=obj.x_coords(), y_coords=obj.y_coords(),
          y_axis='log',
          title='CWT-Octave MORSE Spectrogram')

fill_spec(paul_spec_arr, axes=ax[3],
          x_coords=obj.x_coords(), y_coords=obj.y_coords(),
          y_axis='log',
          title='CWT-Octave PAUL Spectrogram')

fill_spec(bump_spec_arr, axes=ax[4],
          x_coords=obj.x_coords(), y_coords=obj.y_coords(),
          x_axis='time', y_axis='log',
          title='CWT-Octave BUMP Spectrogram')
plt.show()

Spectral Features

Flatness, Novelty, Entropy, RMS and Slope features

import numpy as np
import audioflux as af
from audioflux.type import SpectralDataType, SpectralFilterBankScaleType

import matplotlib.pyplot as plt
from audioflux.display import fill_wave, fill_plot, fill_spec

# Read audio data and sample rate
audio_arr, sr = af.read(af.utils.sample_path('guitar_chord2'))
audio_len = audio_arr.shape[-1]

bft_obj = af.BFT(num=256, samplate=sr, radix2_exp=12, slide_length=1024,
                 data_type=SpectralDataType.MAG,
                 scale_type=SpectralFilterBankScaleType.LINEAR)
spec_arr = bft_obj.bft(audio_arr)
spec_arr = np.abs(spec_arr)

# Create Spectral object and extract spectral feature
spectral_obj = af.Spectral(num=bft_obj.num,
                           fre_band_arr=bft_obj.get_fre_band_arr())
spectral_obj.set_time_length(spec_arr.shape[-1])

flatness_arr = spectral_obj.flatness(spec_arr)
novelty_arr = spectral_obj.novelty(spec_arr)
entropy_arr = spectral_obj.entropy(spec_arr)
rms_arr = spectral_obj.rms(spec_arr)
slope_arr = spectral_obj.slope(spec_arr)

# Display
fig, ax = plt.subplots(nrows=7, figsize=(8, 10), sharex=True)
times = np.arange(0, flatness_arr.shape[-1]) * (bft_obj.slide_length / bft_obj.samplate)

fill_wave(audio_arr, samplate=sr, axes=ax[0])
fill_spec(spec_arr, axes=ax[1],
          x_coords=bft_obj.x_coords(audio_len), y_coords=bft_obj.y_coords(),
          y_axis='log')
fill_plot(times, flatness_arr, axes=ax[2], label='flatness')
fill_plot(times, novelty_arr, axes=ax[3], label='novelty')
fill_plot(times, entropy_arr, axes=ax[4], label='entropy')
fill_plot(times, rms_arr, axes=ax[5], label='rms_arr')
fill_plot(times, slope_arr, axes=ax[6], label='slope_arr')

plt.show()

Pitch Estimate

Fundamental frequency (F0) estimation using the YIN algorithm.

import numpy as np
import audioflux as af
from audioflux.type import PitchType

import matplotlib.pyplot as plt
from audioflux.display import fill_wave

# Read audio data and sample rate
audio_arr, sr = af.read(af.utils.sample_path('voice'))

obj = af.Pitch(pitch_type=PitchType.YIN)

fre_arr, value_arr1, value_arr2 = obj.pitch(audio_arr)
fre_arr[fre_arr < 1] = np.nan

# Display
fig, ax = plt.subplots(nrows=2, figsize=(8, 6), sharex=True)
times = np.arange(0, fre_arr.shape[-1]) * (obj.slide_length / obj.samplate)

fill_wave(audio_arr, samplate=sr, axes=ax[0])

ax[1].xaxis.set_label_text("Time(s)")
ax[1].yaxis.set_label_text("Frequency(Hz)")
ax[1].plot(times, fre_arr, label='fre', linewidth=3)
# set real plot
real_fre_arr = np.zeros_like(fre_arr)
real_fre_arr[25:48] = 261.6
real_fre_arr[56:78] = 293.7
real_fre_arr[87:107] = 329.6
real_fre_arr[118:135] = 349.2
real_fre_arr[150:169] = 392.0
real_fre_arr[179:200] = 440.0
real_fre_arr[212:243] = 493.9
real_fre_arr[real_fre_arr == 0] = np.nan
ax[1].plot(times, real_fre_arr, color='red', label='fre', linewidth=2)

plt.show()

Onset Detection

Locate note onset events by picking peaks in an onset strength envelope.

import numpy as np
import audioflux as af
from audioflux.type import SpectralFilterBankScaleType, SpectralDataType, NoveltyType

import matplotlib.pyplot as plt
from audioflux.display import fill_wave, fill_plot, fill_spec

# Read audio data and sample rate
audio_arr, sr = af.read(af.utils.sample_path('guitar_chord2'))

bft_obj = af.BFT(num=128, samplate=sr, radix2_exp=11, slide_length=2048,
                 scale_type=SpectralFilterBankScaleType.MEL,
                 data_type=SpectralDataType.POWER)
spec_arr = bft_obj.bft(audio_arr)
spec_dB_arr = af.utils.power_to_db(np.abs(spec_arr))

n_fre, n_time = spec_dB_arr.shape
onset_obj = af.Onset(time_length=n_time, fre_length=n_fre,
                     slide_length=bft_obj.slide_length, samplate=bft_obj.samplate,
                     novelty_type=NoveltyType.FLUX)
point_arr, evn_arr, time_arr, value_arr = onset_obj.onset(spec_dB_arr)

audio_len = audio_arr.shape[-1]
fig, axes = plt.subplots(nrows=3, sharex=True)
img = fill_spec(spec_dB_arr, axes=axes[0],
                x_coords=bft_obj.x_coords(audio_len), y_coords=bft_obj.y_coords(),
                x_axis='time', y_axis='log',
                title='Onset')

ax = fill_wave(audio_arr, samplate=sr, axes=axes[1])
ax.vlines(time_arr, -1, 1, color='r', alpha=0.9,
          linestyle='--', label='Onsets')

times = np.arange(0, evn_arr.shape[-1]) * (bft_obj.slide_length / sr)
ax = fill_plot(times, evn_arr, axes=axes[2], label='Onset strength')
ax.vlines(time_arr, evn_arr.min(), evn_arr.max(), color='r', alpha=0.9,
          linestyle='--', label='Onsets')

plt.show()

Harmonic Percussive Source Separation

Decompose audio into harmonic and percussive components

import audioflux as af
from audioflux.type import SpectralDataType, WindowType, SpectralFilterBankScaleType

import matplotlib.pyplot as plt
from audioflux.display import fill_wave, fill_spec

# Read audio data and sample rate
audio_arr, sr = af.read(af.utils.sample_path('chord_metronome2'))

# Compute the hpss
radix2_exp = 11
slide_length = (1 << radix2_exp) // 4
hpss_obj = af.HPSS(radix2_exp=radix2_exp, window_type=WindowType.HAMM,
                   slide_length=slide_length, h_order=21, p_order=31)
h_arr, p_arr = hpss_obj.hpss(audio_arr)

# Extract Linear spectrogram 
bft_obj = af.BFT(num=2049, radix2_exp=12, samplate=sr,
                 data_type=SpectralDataType.POWER,
                 scale_type=SpectralFilterBankScaleType.LINEAR)

audio_arr = audio_arr[..., :h_arr.shape[-1]]

origin_spec_arr = bft_obj.bft(audio_arr, result_type=1)
h_spec_arr = bft_obj.bft(h_arr, result_type=1)
p_spec_arr = bft_obj.bft(p_arr, result_type=1)

origin_spec_arr = af.utils.power_to_abs_db(origin_spec_arr)
h_spec_arr = af.utils.power_to_abs_db(h_spec_arr)
p_spec_arr = af.utils.power_to_abs_db(p_spec_arr)

# Display
fig, axes = plt.subplots(nrows=3, sharex=True, sharey=True)
fill_wave(audio_arr, samplate=sr, axes=axes[0])
fill_wave(h_arr, samplate=sr, axes=axes[1])
fill_wave(p_arr, samplate=sr, axes=axes[2])

audio_len = audio_arr.shape[-1]
fig, axes = plt.subplots(nrows=3, sharex=True, sharey=True)
fill_spec(origin_spec_arr, axes=axes[0],
          x_coords=bft_obj.x_coords(audio_len),
          y_coords=bft_obj.y_coords(),
          y_axis='log',
          title='origin spec')
fill_spec(h_spec_arr, axes=axes[1],
          x_coords=bft_obj.x_coords(audio_len),
          y_coords=bft_obj.y_coords(),
          y_axis='log',
          title='h spec')
fill_spec(p_spec_arr, axes=axes[2],
          x_coords=bft_obj.x_coords(audio_len),
          y_coords=bft_obj.y_coords(),
          y_axis='log',
          title='p spec')

plt.show()