-
Notifications
You must be signed in to change notification settings - Fork 5
/
Euler.java
186 lines (168 loc) · 4.55 KB
/
Euler.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import java.lang.reflect.Method;
import org.apfloat.Apint;
import org.apfloat.ApintMath;
public class Euler
{
public static final int MAX_IMPLEMENTED_EULER = 5;
/**
* Euler #1
* Answer: 233168
*
* If we list all the natural numbers below 10 that are multiples of 3 or 5,
* we get 3, 5, 6 and 9. The sum of these multiples is 23.
*
* Find the sum of all the multiples of 3 or 5 below 1000.
*/
public static int euler1() {
int sum = 0;
for (int i=3; i<1000; i++) {
if ((i % 3 == 0) || (i % 5 == 0)) {
sum += i;
}
}
return sum;
}
/**
* Euler #2
* Answer: 4613732
*
* Each new term in the Fibonacci sequence is generated by adding the previous
* two terms. By starting with 1 and 2, the first 10 terms will be:
*
* 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
*
* Find the sum of all the even-valued terms in the sequence which do not
* exceed four million.
*/
public static int euler2() {
int n = 2, a = 1, b = 2;
while (true) {
int c = a + b;
if (4000000 <= c) {
break;
}
if (0 == c % 2) {
n += c;
}
a = b;
b = c;
}
return n;
}
/**
* Euler #3:
* Answer: 6857
* Slow as balls, but ok whatever, it works.
*
* The prime factors of 13195 are 5, 7, 13 and 29.
*
* What is the largest prime factor of the number 600851475143 ?
*/
public static final boolean is_prime(int n)
{
double maxFactor = Math.ceil(Math.sqrt(n));
if (n == 2) {
return true;
}
for (int i=2; i<=maxFactor; i++) {
if (n % i == 0) {
return false;
}
}
return true;
}
public static int euler3() {
final Apint target = new Apint("600851475143");
final Apint APZERO = new Apint(0);
Apint[] xs = ApintMath.sqrt(target);
Apint maxFactor = xs[1].compareTo(APZERO) > 0 ? xs[0].add(new Apint("1")) : xs[0];
for (int i=maxFactor.intValue(); i>=2; i--) {
if (target.mod(new Apint(i)).compareTo(APZERO) == 0 && is_prime(i)) {
return i;
}
}
return -1;
}
/**
* Problem #4
* Answer: 906609
*
* A palindromic number reads the same both ways. The largest
* palindrome made from the product of two 2-digit numbers is 9009 =
* 91 99.
*
* Find the largest palindrome made from the product of two 3-digit
* numbers.
*/
public static String reverseString(String s)
{
if ((null == s) || (s.length() <= 1)) {
return s;
}
return new StringBuffer(s).reverse().toString();
}
public static boolean is_palindromic_number(int n)
{
String s = "" + n;
return s.equals(reverseString(s));
}
public static int euler4()
{
int result = 0;
for (int i=100; i<1000; i++) {
for (int j=0; j<1000; j++) {
int p = i * j;
if (p > result && is_palindromic_number(p)) {
result = p;
}
}
}
return result;
}
/**
* Problem #5
* Answer: 232792560
*
* 2520 is the smallest number that can be divided by each of the
* numbers from 1 to 10 without any remainder.
*
* What is the smallest number that is evenly divisible by all of the
* numbers from 1 to 20?
*/
public static int lcm(int a, int b)
{
for (int i=1;; i++) {
if ((i % a == 0) && (i % b == 0)) {
return i;
}
}
}
public static int euler5() {
int result = lcm(1, 2);
for (int i=2; i<=20; i++) {
result = lcm(result, i);
}
return result;
}
/**************
* Main stuff *
**************/
public static void show(int n)
throws Exception {
Method method = Euler.class.getMethod("euler" + n);
System.out.println("#" + n + ": " + method.invoke(null));
}
public static void main(String[] args)
throws Exception
{
if (args.length > 0) {
for (int i=0; i<args.length; i++) {
show(Integer.parseInt(args[i]));
}
} else {
for (int i=0; i<MAX_IMPLEMENTED_EULER; i++) {
show(i + 1);
}
}
}
}