forked from jiazhihao/ROC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
initializer_kernel.cu
117 lines (113 loc) · 3.87 KB
/
initializer_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/* Copyright 2019 Stanford
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "initializer.h"
#include "types.h"
#include "cuda_helper.h"
#include <curand.h>
#include <ctime>
void GlorotUniform::init_task(const Task* task,
const std::vector<PhysicalRegion>& regions,
Context ctx, Runtime* runtime)
{
assert(regions.size() == 1);
assert(task->regions.size() == 1);
TensorAccessorW<DATATYPE, 2> accW(
regions[0], task->regions[0], FID_DATA, ctx, runtime, NULL,
false/*readOutput*/);
int inputDim = accW.rect.hi[0] - accW.rect.lo[0] + 1;
int outputDim = accW.rect.hi[1] - accW.rect.lo[1] + 1;
// TODO: remove me
//assign_kernel<<<GET_BLOCKS(accW.rect.volume()), CUDA_NUM_THREADS>>>(
// accW.ptr, accW.rect.volume(), 1.0/64);
//return;
//float scale = *((float*) task->args);
float scale = sqrt(6.0 / (inputDim + outputDim));
printf("scale = %.4lf\n", scale);
curandGenerator_t gen;
curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_DEFAULT);
// TODO: change to random seed before releasing
int seed = *((int*) task->args);
fprintf(stderr, "seed = %d\n", seed);
curandSetPseudoRandomGeneratorSeed(gen, seed);
checkCUDA(curandGenerateUniform(gen, accW.ptr, accW.rect.volume()));
scale_kernel<<<GET_BLOCKS(accW.rect.volume()), CUDA_NUM_THREADS>>>(
accW.ptr, accW.rect.volume(), -scale, scale);
checkCUDA(cudaDeviceSynchronize());
curandDestroyGenerator(gen);
}
void ZerosInitializer::init_task(const Task* task,
const std::vector<PhysicalRegion>& regions,
Context ctx, Runtime* runtime)
{
assert(regions.size() == 1);
assert(task->regions.size() == 1);
TensorAccessorW<DATATYPE, 2> accW(
regions[0], task->regions[0], FID_DATA, ctx, runtime, NULL,
false/*readOutput*/);
assign_kernel<<<GET_BLOCKS(accW.rect.volume()), CUDA_NUM_THREADS>>>(
accW.ptr, accW.rect.volume(), 0);
checkCUDA(cudaDeviceSynchronize());
}
void zero_grad_task_impl(const Task* task,
const std::vector<PhysicalRegion>& regions,
Context ctx, Runtime* runtime)
{
assert(regions.size() == task->regions.size());
for (size_t i = 0; i < regions.size(); i++) {
Domain domain = runtime->get_index_space_domain(
ctx, task->regions[i].region.get_index_space());
DATATYPE* w;
switch (domain.get_dim()) {
case 0:
{
// Do not support 0-dim parameters
assert(false);
break;
}
case 1:
{
TensorAccessorW<DATATYPE, 1> accW(
regions[i], task->regions[i], FID_DATA, ctx, runtime, NULL,
false/*readOutput*/);
w = accW.ptr;
break;
}
case 2:
{
TensorAccessorW<DATATYPE, 2> accW(
regions[i], task->regions[i], FID_DATA, ctx, runtime, NULL,
false/*readOutput*/);
w = accW.ptr;
break;
}
case 3:
{
TensorAccessorW<DATATYPE, 3> accW(
regions[i], task->regions[i], FID_DATA, ctx, runtime, NULL,
false/*readOutput*/);
w = accW.ptr;
break;
}
default:
{
assert(false);
break;
}
}
assign_kernel<<<GET_BLOCKS(domain.get_volume()), CUDA_NUM_THREADS>>>(
w, domain.get_volume(), 0.0f);
}
checkCUDA(cudaDeviceSynchronize());
}