forked from jiazhihao/ROC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
element_kernel.cu
112 lines (108 loc) · 4.25 KB
/
element_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/* Copyright 2019 Stanford University
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gnn.h"
#include "cuda_helper.h"
__global__
void op_kernel(const DATATYPE* input0,
const DATATYPE* input1,
DATATYPE* output,
coord_t size,
ElementType type)
{
CUDA_KERNEL_LOOP(i, size)
{
switch(type) {
case EW_TYPE_ADD:
output[i] = input0[i] + input1[i];
break;
case EW_TYPE_MUL:
output[i] = input0[i] * input1[i];
break;
default:
assert(false);
}
}
}
__host__
void Element::forward_task(const Task *task,
const std::vector<PhysicalRegion>& regions,
Context ctx, Runtime* runtime)
{
assert(regions.size() == 3);
assert(task->regions.size() == 3);
const Element* op = (Element*) task->args;
ResourceManager* manager = *((ResourceManager**) task->local_args);
assert(manager->proc_id == task->current_proc.id);
manager->reset();
TensorAccessorR<DATATYPE, 2> accInput0(
regions[0], task->regions[0], FID_DATA, ctx, runtime, manager);
TensorAccessorR<DATATYPE, 2> accInput1(
regions[1], task->regions[1], FID_DATA, ctx, runtime, manager);
TensorAccessorW<DATATYPE, 2> accOutput(
regions[2], task->regions[2], FID_DATA, ctx, runtime, manager,
false/*readOutput*/);
assert(accInput0.rect == accInput1.rect);
assert(accOutput.rect == accInput0.rect);
assert(accInput0.memory.kind() == Memory::Z_COPY_MEM);
assert(accInput1.memory.kind() == Memory::Z_COPY_MEM);
assert(accOutput.memory.kind() == Memory::Z_COPY_MEM);
op_kernel<<<GET_BLOCKS(accOutput.rect.volume()), CUDA_NUM_THREADS>>>(
accInput0.fbCache, accInput1.fbCache, accOutput.fbCache,
accOutput.rect.volume(), op->elementType);
checkCUDA(cudaMemcpy(accOutput.ptr, accOutput.fbCache,
accOutput.rect.volume() * sizeof(DATATYPE),
cudaMemcpyDeviceToHost));
}
__host__
void Element::backward_task(const Task *task,
const std::vector<PhysicalRegion>& regions,
Context ctx, Runtime* runtime)
{
assert(regions.size() == 3);
assert(task->regions.size() == 3);
const Element* op = (Element*) task->args;
ResourceManager* manager = *((ResourceManager**) task->local_args);
assert(manager->proc_id == task->current_proc.id);
manager->reset();
TensorAccessorR<DATATYPE, 2> accOutputGrad(
regions[0], task->regions[0], FID_DATA, ctx, runtime, manager);
TensorAccessorW<DATATYPE, 2> accInput0Grad(
regions[1], task->regions[1], FID_DATA, ctx, runtime, manager,
!(op->resetInputGrads[0])/*readOutput*/);
TensorAccessorW<DATATYPE, 2> accInput1Grad(
regions[2], task->regions[2], FID_DATA, ctx, runtime, manager,
!(op->resetInputGrads[1])/*readOutput*/);
assert(accOutputGrad.rect == accInput0Grad.rect);
assert(accOutputGrad.rect == accInput1Grad.rect);
switch (op->elementType) {
case EW_TYPE_ADD:
{
add_kernel<<<GET_BLOCKS(accOutputGrad.rect.volume()), CUDA_NUM_THREADS>>>(
accInput0Grad.fbCache, accOutputGrad.fbCache, accOutputGrad.rect.volume());
add_kernel<<<GET_BLOCKS(accOutputGrad.rect.volume()), CUDA_NUM_THREADS>>>(
accInput1Grad.fbCache, accOutputGrad.fbCache, accOutputGrad.rect.volume());
break;
}
case EW_TYPE_MUL:
default:
assert(false);
}
checkCUDA(cudaMemcpy(accInput0Grad.ptr, accInput0Grad.fbCache,
accInput0Grad.rect.volume() * sizeof(DATATYPE),
cudaMemcpyDeviceToHost));
checkCUDA(cudaMemcpy(accInput1Grad.ptr, accInput1Grad.fbCache,
accInput1Grad.rect.volume() * sizeof(DATATYPE),
cudaMemcpyDeviceToHost));
}