-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathage&genderdetection_ipynb_prototype_1.py
94 lines (75 loc) · 3.35 KB
/
age&genderdetection_ipynb_prototype_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# -*- coding: utf-8 -*-
"""age&genderDetection.ipynb - prototype 1
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1rpLy_Tj_R2z8WFSBRuZFBC-V928Z7wc-
"""
# Commented out IPython magic to ensure Python compatibility.
!git clone https://github.com/misbah4064/age_and_gender_detection.git
# %cd age_and_gender_detection
# Downloading pretrained data and unzipping it
!gdown https://drive.google.com/uc?id=1_aDScOvBeBLCn_iv0oxSO8X1ySQpSbIS
# https://drive.google.com/uc?id=1_aDScOvBeBLCn_iv0oxSO8X1ySQpSbIS
!unzip modelNweight.zip
# Import required modules
import cv2 as cv
import math
import time
from google.colab.patches import cv2_imshow
def getFaceBox(net, frame, conf_threshold=0.7):
frameOpencvDnn = frame.copy()
frameHeight = frameOpencvDnn.shape[0]
frameWidth = frameOpencvDnn.shape[1]
blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
net.setInput(blob)
detections = net.forward()
bboxes = []
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > conf_threshold:
x1 = int(detections[0, 0, i, 3] * frameWidth)
y1 = int(detections[0, 0, i, 4] * frameHeight)
x2 = int(detections[0, 0, i, 5] * frameWidth)
y2 = int(detections[0, 0, i, 6] * frameHeight)
bboxes.append([x1, y1, x2, y2])
cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
return frameOpencvDnn, bboxes
faceProto = "modelNweight/opencv_face_detector.pbtxt"
faceModel = "modelNweight/opencv_face_detector_uint8.pb"
ageProto = "modelNweight/age_deploy.prototxt"
ageModel = "modelNweight/age_net.caffemodel"
genderProto = "modelNweight/gender_deploy.prototxt"
genderModel = "modelNweight/gender_net.caffemodel"
MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList = ['Male', 'Female']
# Load network
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderNet = cv.dnn.readNet(genderModel, genderProto)
faceNet = cv.dnn.readNet(faceModel, faceProto)
padding = 20
def age_gender_detector(frame):
# Read frame
t = time.time()
frameFace, bboxes = getFaceBox(faceNet, frame)
for bbox in bboxes:
# print(bbox)
face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)]
blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds = genderNet.forward()
gender = genderList[genderPreds[0].argmax()]
ageNet.setInput(blob)
agePreds = ageNet.forward()
age = ageList[agePreds[0].argmax()]
label = "{},{}".format(gender, age)
cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)
return frameFace
input = cv.imread("image.jpg")
output = age_gender_detector(input)
cv2_imshow(output)
input = cv.imread("image2.jpg")
output = age_gender_detector(input)
cv2_imshow(output)
# initialize the Haar Cascade face detection model
face_cascade = cv2.CascadeClassifier(cv2.samples.findFile(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'))