forked from udacity/CarND-Transfer-Learning-Lab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
feature_extraction.py
55 lines (40 loc) · 1.45 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import pickle
import tensorflow as tf
# TODO: import Keras layers you need here
flags = tf.app.flags
FLAGS = flags.FLAGS
# command line flags
flags.DEFINE_string('training_file', '', "Bottleneck features training file (.p)")
flags.DEFINE_string('validation_file', '', "Bottleneck features validation file (.p)")
def load_bottleneck_data(training_file, validation_file):
"""
Utility function to load bottleneck features.
Arguments:
training_file - String
validation_file - String
"""
print("Training file", training_file)
print("Validation file", validation_file)
with open(training_file, 'rb') as f:
train_data = pickle.load(f)
with open(validation_file, 'rb') as f:
validation_data = pickle.load(f)
X_train = train_data['features']
y_train = train_data['labels']
X_val = validation_data['features']
y_val = validation_data['labels']
return X_train, y_train, X_val, y_val
def main(_):
# load bottleneck data
X_train, y_train, X_val, y_val = load_bottleneck_data(FLAGS.training_file, FLAGS.validation_file)
print(X_train.shape, y_train.shape)
print(X_val.shape, y_val.shape)
# TODO: define your model and hyperparams here
# make sure to adjust the number of classes based on
# the dataset
# 10 for cifar10
# 43 for traffic
# TODO: train your model here
# parses flags and calls the `main` function above
if __name__ == '__main__':
tf.app.run()