forked from jgarff/rpi_ws281x
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ws2811.c
1305 lines (1124 loc) · 36.7 KB
/
ws2811.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* ws2811.c
*
* Copyright (c) 2014 Jeremy Garff <jer @ jers.net>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* 3. Neither the name of the owner nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <signal.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
#include <time.h>
#include <math.h>
#include "mailbox.h"
#include "clk.h"
#include "gpio.h"
#include "dma.h"
#include "pwm.h"
#include "pcm.h"
#include "rpihw.h"
#include "ws2811.h"
#define BUS_TO_PHYS(x) ((x)&~0xC0000000)
#define OSC_FREQ 19200000 // crystal frequency
#define OSC_FREQ_PI4 54000000 // Pi 4 crystal frequency
/* 4 colors (R, G, B + W), 8 bits per byte, 3 symbols per bit + 55uS low for reset signal */
#define LED_COLOURS 4
#define LED_RESET_uS 55
#define LED_BIT_COUNT(leds, freq) ((leds * LED_COLOURS * 8 * 3) + ((LED_RESET_uS * \
(freq * 3)) / 1000000))
/* Minimum time to wait for reset to occur in microseconds. */
#define LED_RESET_WAIT_TIME 300
// Pad out to the nearest uint32 + 32-bits for idle low/high times the number of channels
#define PWM_BYTE_COUNT(leds, freq) (((((LED_BIT_COUNT(leds, freq) >> 3) & ~0x7) + 4) + 4) * \
RPI_PWM_CHANNELS)
#define PCM_BYTE_COUNT(leds, freq) ((((LED_BIT_COUNT(leds, freq) >> 3) & ~0x7) + 4) + 4)
// Symbol definitions
#define SYMBOL_HIGH 0x6 // 1 1 0
#define SYMBOL_LOW 0x4 // 1 0 0
// Symbol definitions for software inversion (PCM and SPI only)
#define SYMBOL_HIGH_INV 0x1 // 0 0 1
#define SYMBOL_LOW_INV 0x3 // 0 1 1
// Driver mode definitions
#define NONE 0
#define PWM 1
#define PCM 2
#define SPI 3
// We use the mailbox interface to request memory from the VideoCore.
// This lets us request one physically contiguous chunk, find its
// physical address, and map it 'uncached' so that writes from this
// code are immediately visible to the DMA controller. This struct
// holds data relevant to the mailbox interface.
typedef struct videocore_mbox {
int handle; /* From mbox_open() */
unsigned mem_ref; /* From mem_alloc() */
unsigned bus_addr; /* From mem_lock() */
unsigned size; /* Size of allocation */
uint8_t *virt_addr; /* From mapmem() */
} videocore_mbox_t;
typedef struct ws2811_device
{
int driver_mode;
volatile uint8_t *pxl_raw;
volatile dma_t *dma;
volatile pwm_t *pwm;
volatile pcm_t *pcm;
int spi_fd;
volatile dma_cb_t *dma_cb;
uint32_t dma_cb_addr;
volatile gpio_t *gpio;
volatile cm_clk_t *cm_clk;
videocore_mbox_t mbox;
int max_count;
} ws2811_device_t;
/**
* Provides monotonic timestamp in microseconds.
*
* @returns Current timestamp in microseconds or 0 on error.
*/
static uint64_t get_microsecond_timestamp()
{
struct timespec t;
if (clock_gettime(CLOCK_MONOTONIC_RAW, &t) != 0) {
return 0;
}
return (uint64_t) t.tv_sec * 1000000 + t.tv_nsec / 1000;
}
/**
* Iterate through the channels and find the largest led count.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns Maximum number of LEDs in all channels.
*/
static int max_channel_led_count(ws2811_t *ws2811)
{
int chan, max = 0;
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++)
{
if (ws2811->channel[chan].count > max)
{
max = ws2811->channel[chan].count;
}
}
return max;
}
/**
* Map all devices into userspace memory.
* Not called for SPI
*
* @param ws2811 ws2811 instance pointer.
*
* @returns 0 on success, -1 otherwise.
*/
static int map_registers(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
const rpi_hw_t *rpi_hw = ws2811->rpi_hw;
uint32_t base = ws2811->rpi_hw->periph_base;
uint32_t dma_addr;
uint32_t offset = 0;
dma_addr = dmanum_to_offset(ws2811->dmanum);
if (!dma_addr)
{
return -1;
}
dma_addr += rpi_hw->periph_base;
device->dma = mapmem(dma_addr, sizeof(dma_t), DEV_MEM);
if (!device->dma)
{
return -1;
}
switch (device->driver_mode) {
case PWM:
device->pwm = mapmem(PWM_OFFSET + base, sizeof(pwm_t), DEV_MEM);
if (!device->pwm)
{
return -1;
}
break;
case PCM:
device->pcm = mapmem(PCM_OFFSET + base, sizeof(pcm_t), DEV_MEM);
if (!device->pcm)
{
return -1;
}
break;
}
/*
* The below call can potentially work with /dev/gpiomem instead.
* However, it used /dev/mem before, so I'm leaving it as such.
*/
device->gpio = mapmem(GPIO_OFFSET + base, sizeof(gpio_t), DEV_MEM);
if (!device->gpio)
{
return -1;
}
switch (device->driver_mode) {
case PWM:
offset = CM_PWM_OFFSET;
break;
case PCM:
offset = CM_PCM_OFFSET;
break;
}
device->cm_clk = mapmem(offset + base, sizeof(cm_clk_t), DEV_MEM);
if (!device->cm_clk)
{
return -1;
}
return 0;
}
/**
* Unmap all devices from virtual memory.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
static void unmap_registers(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
if (device->dma)
{
unmapmem((void *)device->dma, sizeof(dma_t));
}
if (device->pwm)
{
unmapmem((void *)device->pwm, sizeof(pwm_t));
}
if (device->pcm)
{
unmapmem((void *)device->pcm, sizeof(pcm_t));
}
if (device->cm_clk)
{
unmapmem((void *)device->cm_clk, sizeof(cm_clk_t));
}
if (device->gpio)
{
unmapmem((void *)device->gpio, sizeof(gpio_t));
}
}
/**
* Given a userspace address pointer, return the matching bus address used by DMA.
* Note: The bus address is not the same as the CPU physical address.
*
* @param addr Userspace virtual address pointer.
*
* @returns Bus address for use by DMA.
*/
static uint32_t addr_to_bus(ws2811_device_t *device, const volatile void *virt)
{
videocore_mbox_t *mbox = &device->mbox;
uint32_t offset = (uint8_t *)virt - mbox->virt_addr;
return mbox->bus_addr + offset;
}
/**
* Stop the PWM controller.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
static void stop_pwm(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
volatile pwm_t *pwm = device->pwm;
volatile cm_clk_t *cm_clk = device->cm_clk;
// Turn off the PWM in case already running
pwm->ctl = 0;
usleep(10);
// Kill the clock if it was already running
cm_clk->ctl = CM_CLK_CTL_PASSWD | CM_CLK_CTL_KILL;
usleep(10);
while (cm_clk->ctl & CM_CLK_CTL_BUSY)
;
}
/**
* Stop the PCM controller.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
static void stop_pcm(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
volatile pcm_t *pcm = device->pcm;
volatile cm_clk_t *cm_clk = device->cm_clk;
// Turn off the PCM in case already running
pcm->cs = 0;
usleep(10);
// Kill the clock if it was already running
cm_clk->ctl = CM_CLK_CTL_PASSWD | CM_CLK_CTL_KILL;
usleep(10);
while (cm_clk->ctl & CM_CLK_CTL_BUSY)
;
}
/**
* Setup the PWM controller in serial mode on both channels using DMA to feed the PWM FIFO.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
static int setup_pwm(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
volatile dma_t *dma = device->dma;
volatile dma_cb_t *dma_cb = device->dma_cb;
volatile pwm_t *pwm = device->pwm;
volatile cm_clk_t *cm_clk = device->cm_clk;
int maxcount = device->max_count;
uint32_t freq = ws2811->freq;
int32_t byte_count;
const rpi_hw_t *rpi_hw = ws2811->rpi_hw;
const uint32_t rpi_type = rpi_hw->type;
uint32_t osc_freq = OSC_FREQ;
if(rpi_type == RPI_HWVER_TYPE_PI4){
osc_freq = OSC_FREQ_PI4;
}
stop_pwm(ws2811);
// Setup the Clock - Use OSC @ 19.2Mhz w/ 3 clocks/tick
cm_clk->div = CM_CLK_DIV_PASSWD | CM_CLK_DIV_DIVI(osc_freq / (3 * freq));
cm_clk->ctl = CM_CLK_CTL_PASSWD | CM_CLK_CTL_SRC_OSC;
cm_clk->ctl = CM_CLK_CTL_PASSWD | CM_CLK_CTL_SRC_OSC | CM_CLK_CTL_ENAB;
usleep(10);
while (!(cm_clk->ctl & CM_CLK_CTL_BUSY))
;
// Setup the PWM, use delays as the block is rumored to lock up without them. Make
// sure to use a high enough priority to avoid any FIFO underruns, especially if
// the CPU is busy doing lots of memory accesses, or another DMA controller is
// busy. The FIFO will clock out data at a much slower rate (2.6Mhz max), so
// the odds of a DMA priority boost are extremely low.
pwm->rng1 = 32; // 32-bits per word to serialize
usleep(10);
pwm->ctl = RPI_PWM_CTL_CLRF1;
usleep(10);
pwm->dmac = RPI_PWM_DMAC_ENAB | RPI_PWM_DMAC_PANIC(7) | RPI_PWM_DMAC_DREQ(3);
usleep(10);
pwm->ctl = RPI_PWM_CTL_USEF1 | RPI_PWM_CTL_MODE1 |
RPI_PWM_CTL_USEF2 | RPI_PWM_CTL_MODE2;
if (ws2811->channel[0].invert)
{
pwm->ctl |= RPI_PWM_CTL_POLA1;
}
if (ws2811->channel[1].invert)
{
pwm->ctl |= RPI_PWM_CTL_POLA2;
}
usleep(10);
pwm->ctl |= RPI_PWM_CTL_PWEN1 | RPI_PWM_CTL_PWEN2;
// Initialize the DMA control block
byte_count = PWM_BYTE_COUNT(maxcount, freq);
dma_cb->ti = RPI_DMA_TI_NO_WIDE_BURSTS | // 32-bit transfers
RPI_DMA_TI_WAIT_RESP | // wait for write complete
RPI_DMA_TI_DEST_DREQ | // user peripheral flow control
RPI_DMA_TI_PERMAP(5) | // PWM peripheral
RPI_DMA_TI_SRC_INC; // Increment src addr
dma_cb->source_ad = addr_to_bus(device, device->pxl_raw);
dma_cb->dest_ad = (uintptr_t)&((pwm_t *)PWM_PERIPH_PHYS)->fif1;
dma_cb->txfr_len = byte_count;
dma_cb->stride = 0;
dma_cb->nextconbk = 0;
dma->cs = 0;
dma->txfr_len = 0;
return 0;
}
/**
* Setup the PCM controller with one 32-bit channel in a 32-bit frame using DMA to feed the PCM FIFO.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
static int setup_pcm(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
volatile dma_t *dma = device->dma;
volatile dma_cb_t *dma_cb = device->dma_cb;
volatile pcm_t *pcm = device->pcm;
volatile cm_clk_t *cm_clk = device->cm_clk;
//int maxcount = max_channel_led_count(ws2811);
int maxcount = device->max_count;
uint32_t freq = ws2811->freq;
int32_t byte_count;
const rpi_hw_t *rpi_hw = ws2811->rpi_hw;
const uint32_t rpi_type = rpi_hw->type;
uint32_t osc_freq = OSC_FREQ;
if(rpi_type == RPI_HWVER_TYPE_PI4){
osc_freq = OSC_FREQ_PI4;
}
stop_pcm(ws2811);
// Setup the PCM Clock - Use OSC @ 19.2Mhz w/ 3 clocks/tick
cm_clk->div = CM_CLK_DIV_PASSWD | CM_CLK_DIV_DIVI(osc_freq / (3 * freq));
cm_clk->ctl = CM_CLK_CTL_PASSWD | CM_CLK_CTL_SRC_OSC;
cm_clk->ctl = CM_CLK_CTL_PASSWD | CM_CLK_CTL_SRC_OSC | CM_CLK_CTL_ENAB;
usleep(10);
while (!(cm_clk->ctl & CM_CLK_CTL_BUSY))
;
// Setup the PCM, use delays as the block is rumored to lock up without them. Make
// sure to use a high enough priority to avoid any FIFO underruns, especially if
// the CPU is busy doing lots of memory accesses, or another DMA controller is
// busy. The FIFO will clock out data at a much slower rate (2.6Mhz max), so
// the odds of a DMA priority boost are extremely low.
pcm->cs = RPI_PCM_CS_EN; // Enable PCM hardware
pcm->mode = (RPI_PCM_MODE_FLEN(31) | RPI_PCM_MODE_FSLEN(1));
// Framelength 32, clock enabled, frame sync pulse
pcm->txc = RPI_PCM_TXC_CH1WEX | RPI_PCM_TXC_CH1EN | RPI_PCM_TXC_CH1POS(0) | RPI_PCM_TXC_CH1WID(8);
// Single 32-bit channel
pcm->cs |= RPI_PCM_CS_TXCLR; // Reset transmit fifo
usleep(10);
pcm->cs |= RPI_PCM_CS_DMAEN; // Enable DMA DREQ
pcm->dreq = (RPI_PCM_DREQ_TX(0x3F) | RPI_PCM_DREQ_TX_PANIC(0x10)); // Set FIFO tresholds
// Initialize the DMA control block
byte_count = PCM_BYTE_COUNT(maxcount, freq);
dma_cb->ti = RPI_DMA_TI_NO_WIDE_BURSTS | // 32-bit transfers
RPI_DMA_TI_WAIT_RESP | // wait for write complete
RPI_DMA_TI_DEST_DREQ | // user peripheral flow control
RPI_DMA_TI_PERMAP(2) | // PCM TX peripheral
RPI_DMA_TI_SRC_INC; // Increment src addr
dma_cb->source_ad = addr_to_bus(device, device->pxl_raw);
dma_cb->dest_ad = (uintptr_t)&((pcm_t *)PCM_PERIPH_PHYS)->fifo;
dma_cb->txfr_len = byte_count;
dma_cb->stride = 0;
dma_cb->nextconbk = 0;
dma->cs = 0;
dma->txfr_len = 0;
return 0;
}
/**
* Start the DMA feeding the PWM FIFO. This will stream the entire DMA buffer out of both
* PWM channels.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
static void dma_start(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
volatile dma_t *dma = device->dma;
volatile pcm_t *pcm = device->pcm;
uint32_t dma_cb_addr = device->dma_cb_addr;
dma->cs = RPI_DMA_CS_RESET;
usleep(10);
dma->cs = RPI_DMA_CS_INT | RPI_DMA_CS_END;
usleep(10);
dma->conblk_ad = dma_cb_addr;
dma->debug = 7; // clear debug error flags
dma->cs = RPI_DMA_CS_WAIT_OUTSTANDING_WRITES |
RPI_DMA_CS_PANIC_PRIORITY(15) |
RPI_DMA_CS_PRIORITY(15) |
RPI_DMA_CS_ACTIVE;
if (device->driver_mode == PCM)
{
pcm->cs |= RPI_PCM_CS_TXON; // Start transmission
}
}
/**
* Initialize the application selected GPIO pins for PWM/PCM operation.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns 0 on success, -1 on unsupported pin
*/
static int gpio_init(ws2811_t *ws2811)
{
volatile gpio_t *gpio = ws2811->device->gpio;
int chan;
int altnum;
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++)
{
int pinnum = ws2811->channel[chan].gpionum;
if (pinnum)
{
switch (ws2811->device->driver_mode)
{
case PWM:
altnum = pwm_pin_alt(chan, pinnum);
break;
case PCM:
altnum = pcm_pin_alt(PCMFUN_DOUT, pinnum);
break;
default:
altnum = -1;
}
if (altnum < 0)
{
return -1;
}
gpio_function_set(gpio, pinnum, altnum);
}
}
return 0;
}
/**
* Initialize the PWM DMA buffer with all zeros, inverted operation will be
* handled by hardware. The DMA buffer length is assumed to be a word
* multiple.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
void pwm_raw_init(ws2811_t *ws2811)
{
volatile uint32_t *pxl_raw = (uint32_t *)ws2811->device->pxl_raw;
int maxcount = ws2811->device->max_count;
int wordcount = (PWM_BYTE_COUNT(maxcount, ws2811->freq) / sizeof(uint32_t)) /
RPI_PWM_CHANNELS;
int chan;
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++)
{
int i, wordpos = chan;
for (i = 0; i < wordcount; i++)
{
pxl_raw[wordpos] = 0x0;
wordpos += 2;
}
}
}
/**
* Initialize the PCM DMA buffer with all zeros.
* The DMA buffer length is assumed to be a word multiple.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
void pcm_raw_init(ws2811_t *ws2811)
{
volatile uint32_t *pxl_raw = (uint32_t *)ws2811->device->pxl_raw;
int maxcount = ws2811->device->max_count;
int wordcount = PCM_BYTE_COUNT(maxcount, ws2811->freq) / sizeof(uint32_t);
int i;
for (i = 0; i < wordcount; i++)
{
pxl_raw[i] = 0x0;
}
}
/**
* Cleanup previously allocated device memory and buffers.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns None
*/
void ws2811_cleanup(ws2811_t *ws2811)
{
ws2811_device_t *device = ws2811->device;
int chan;
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++)
{
if (ws2811->channel[chan].leds)
{
free(ws2811->channel[chan].leds);
}
ws2811->channel[chan].leds = NULL;
if (ws2811->channel[chan].gamma)
{
free(ws2811->channel[chan].gamma);
}
ws2811->channel[chan].gamma = NULL;
}
if (device->mbox.handle != -1)
{
videocore_mbox_t *mbox = &device->mbox;
unmapmem(mbox->virt_addr, mbox->size);
mem_unlock(mbox->handle, mbox->mem_ref);
mem_free(mbox->handle, mbox->mem_ref);
mbox_close(mbox->handle);
mbox->handle = -1;
}
if (device && (device->spi_fd > 0))
{
close(device->spi_fd);
}
if (device) {
free(device);
}
ws2811->device = NULL;
}
static int set_driver_mode(ws2811_t *ws2811, int gpionum)
{
int gpionum2;
if (gpionum == 18 || gpionum == 12) {
ws2811->device->driver_mode = PWM;
// Check gpio for PWM1 (2nd channel) is OK if used
gpionum2 = ws2811->channel[1].gpionum;
if (gpionum2 == 0 || gpionum2 == 13 || gpionum2 == 19 || gpionum == 41 || gpionum == 45 || gpionum == 53) {
return 0;
}
}
else if (gpionum == 21 || gpionum == 31) {
ws2811->device->driver_mode = PCM;
}
else if (gpionum == 10) {
ws2811->device->driver_mode = SPI;
}
else {
fprintf(stderr, "gpionum %d not allowed\n", gpionum);
return -1;
}
// For PCM and SPI zero the 2nd channel
memset(&ws2811->channel[1], 0, sizeof(ws2811_channel_t));
return 0;
}
static int check_hwver_and_gpionum(ws2811_t *ws2811)
{
const rpi_hw_t *rpi_hw;
int hwver, gpionum;
int gpionums_B1[] = { 10, 18, 21 };
int gpionums_B2[] = { 10, 18, 31 };
int gpionums_40p[] = { 10, 12, 18, 21};
int i;
rpi_hw = ws2811->rpi_hw;
hwver = rpi_hw->hwver & 0x0000ffff;
gpionum = ws2811->channel[0].gpionum;
if (hwver < 0x0004) // Model B Rev 1
{
for ( i = 0; i < (int)(sizeof(gpionums_B1) / sizeof(gpionums_B1[0])); i++)
{
if (gpionums_B1[i] == gpionum) {
// Set driver mode (PWM, PCM, or SPI)
return set_driver_mode(ws2811, gpionum);
}
}
}
else if (hwver >= 0x0004 && hwver <= 0x000f) // Models B Rev2, A
{
for ( i = 0; i < (int)(sizeof(gpionums_B2) / sizeof(gpionums_B2[0])); i++)
{
if (gpionums_B2[i] == gpionum) {
// Set driver mode (PWM, PCM, or SPI)
return set_driver_mode(ws2811, gpionum);
}
}
}
else if (hwver >= 0x010) // Models B+, A+, 2B, 3B, Zero Zero-W
{
if ((ws2811->channel[0].count == 0) && (ws2811->channel[1].count > 0))
{
// Special case: nothing in channel 0, channel 1 only PWM1 allowed
// PWM1 only available on 40 pin GPIO interface
gpionum = ws2811->channel[1].gpionum;
if (gpionum == 13 || gpionum == 19 || gpionum == 41 || gpionum == 45 || gpionum == 53)
{
ws2811->device->driver_mode = PWM;
return 0;
}
else {
return -1;
}
}
for ( i = 0; i < (int)(sizeof(gpionums_40p) / sizeof(gpionums_40p[0])); i++)
{
if (gpionums_40p[i] == gpionum) {
// Set driver mode (PWM, PCM, or SPI)
return set_driver_mode(ws2811, gpionum);
}
}
}
fprintf(stderr, "Gpio %d is illegal for LED channel 0\n", gpionum);
return -1;
}
static ws2811_return_t spi_init(ws2811_t *ws2811)
{
int spi_fd;
static uint8_t mode;
static uint8_t bits = 8;
uint32_t speed = ws2811->freq * 3;
ws2811_device_t *device = ws2811->device;
uint32_t base = ws2811->rpi_hw->periph_base;
int pinnum = ws2811->channel[0].gpionum;
spi_fd = open("/dev/spidev0.0", O_RDWR);
if (spi_fd < 0) {
fprintf(stderr, "Cannot open /dev/spidev0.0. spi_bcm2835 module not loaded?\n");
return WS2811_ERROR_SPI_SETUP;
}
device->spi_fd = spi_fd;
// SPI mode
if (ioctl(spi_fd, SPI_IOC_WR_MODE, &mode) < 0)
{
return WS2811_ERROR_SPI_SETUP;
}
if (ioctl(spi_fd, SPI_IOC_RD_MODE, &mode) < 0)
{
return WS2811_ERROR_SPI_SETUP;
}
// Bits per word
if (ioctl(spi_fd, SPI_IOC_WR_BITS_PER_WORD, &bits) < 0)
{
return WS2811_ERROR_SPI_SETUP;
}
if (ioctl(spi_fd, SPI_IOC_RD_BITS_PER_WORD, &bits) < 0)
{
return WS2811_ERROR_SPI_SETUP;
}
// Max speed Hz
if (ioctl(spi_fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed) < 0)
{
return WS2811_ERROR_SPI_SETUP;
}
if (ioctl(spi_fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed) < 0)
{
return WS2811_ERROR_SPI_SETUP;
}
// Initialize device structure elements to not used
// except driver_mode, spi_fd and max_count (already defined when spi_init called)
device->pxl_raw = NULL;
device->dma = NULL;
device->pwm = NULL;
device->pcm = NULL;
device->dma_cb = NULL;
device->dma_cb_addr = 0;
device->cm_clk = NULL;
device->mbox.handle = -1;
// Set SPI-MOSI pin
device->gpio = mapmem(GPIO_OFFSET + base, sizeof(gpio_t), DEV_GPIOMEM);
if (!device->gpio)
{
return WS2811_ERROR_SPI_SETUP;
}
gpio_function_set(device->gpio, pinnum, 0); // SPI-MOSI ALT0
// Allocate LED buffer
ws2811_channel_t *channel = &ws2811->channel[0];
channel->leds = malloc(sizeof(ws2811_led_t) * channel->count);
if (!channel->leds)
{
ws2811_cleanup(ws2811);
return WS2811_ERROR_OUT_OF_MEMORY;
}
memset(channel->leds, 0, sizeof(ws2811_led_t) * channel->count);
if (!channel->strip_type)
{
channel->strip_type=WS2811_STRIP_RGB;
}
// Set default uncorrected gamma table
if (!channel->gamma)
{
channel->gamma = malloc(sizeof(uint8_t) * 256);
int x;
for(x = 0; x < 256; x++){
channel->gamma[x] = x;
}
}
channel->wshift = (channel->strip_type >> 24) & 0xff;
channel->rshift = (channel->strip_type >> 16) & 0xff;
channel->gshift = (channel->strip_type >> 8) & 0xff;
channel->bshift = (channel->strip_type >> 0) & 0xff;
// Allocate SPI transmit buffer (same size as PCM)
device->pxl_raw = malloc(PCM_BYTE_COUNT(device->max_count, ws2811->freq));
if (device->pxl_raw == NULL)
{
ws2811_cleanup(ws2811);
return WS2811_ERROR_OUT_OF_MEMORY;
}
pcm_raw_init(ws2811);
return WS2811_SUCCESS;
}
static ws2811_return_t spi_transfer(ws2811_t *ws2811)
{
int ret;
struct spi_ioc_transfer tr;
memset(&tr, 0, sizeof(struct spi_ioc_transfer));
tr.tx_buf = (unsigned long)ws2811->device->pxl_raw;
tr.rx_buf = 0;
tr.len = PCM_BYTE_COUNT(ws2811->device->max_count, ws2811->freq);
ret = ioctl(ws2811->device->spi_fd, SPI_IOC_MESSAGE(1), &tr);
if (ret < 1)
{
fprintf(stderr, "Can't send spi message");
return WS2811_ERROR_SPI_TRANSFER;
}
return WS2811_SUCCESS;
}
/*
*
* Application API Functions
*
*/
/**
* Allocate and initialize memory, buffers, pages, PWM, DMA, and GPIO.
*
* @param ws2811 ws2811 instance pointer.
*
* @returns 0 on success, -1 otherwise.
*/
ws2811_return_t ws2811_init(ws2811_t *ws2811)
{
ws2811_device_t *device;
const rpi_hw_t *rpi_hw;
int chan;
ws2811->rpi_hw = rpi_hw_detect();
if (!ws2811->rpi_hw)
{
return WS2811_ERROR_HW_NOT_SUPPORTED;
}
rpi_hw = ws2811->rpi_hw;
ws2811->device = malloc(sizeof(*ws2811->device));
if (!ws2811->device)
{
return WS2811_ERROR_OUT_OF_MEMORY;
}
memset(ws2811->device, 0, sizeof(*ws2811->device));
device = ws2811->device;
if (check_hwver_and_gpionum(ws2811) < 0)
{
return WS2811_ERROR_ILLEGAL_GPIO;
}
device->max_count = max_channel_led_count(ws2811);
if (device->driver_mode == SPI) {
return spi_init(ws2811);
}
// Determine how much physical memory we need for DMA
switch (device->driver_mode) {
case PWM:
device->mbox.size = PWM_BYTE_COUNT(device->max_count, ws2811->freq) +
sizeof(dma_cb_t);
break;
case PCM:
device->mbox.size = PCM_BYTE_COUNT(device->max_count, ws2811->freq) +
sizeof(dma_cb_t);
break;
}
// Round up to page size multiple
device->mbox.size = (device->mbox.size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
device->mbox.handle = mbox_open();
if (device->mbox.handle == -1)
{
return WS2811_ERROR_MAILBOX_DEVICE;
}
device->mbox.mem_ref = mem_alloc(device->mbox.handle, device->mbox.size, PAGE_SIZE,
rpi_hw->videocore_base == 0x40000000 ? 0xC : 0x4);
if (device->mbox.mem_ref == 0)
{
return WS2811_ERROR_OUT_OF_MEMORY;
}
device->mbox.bus_addr = mem_lock(device->mbox.handle, device->mbox.mem_ref);
if (device->mbox.bus_addr == (uint32_t) ~0UL)
{
mem_free(device->mbox.handle, device->mbox.size);
return WS2811_ERROR_MEM_LOCK;
}
device->mbox.virt_addr = mapmem(BUS_TO_PHYS(device->mbox.bus_addr), device->mbox.size, DEV_MEM);
if (!device->mbox.virt_addr)
{
mem_unlock(device->mbox.handle, device->mbox.mem_ref);
mem_free(device->mbox.handle, device->mbox.size);
ws2811_cleanup(ws2811);
return WS2811_ERROR_MMAP;
}
// Initialize all pointers to NULL. Any non-NULL pointers will be freed on cleanup.
device->pxl_raw = NULL;
device->dma_cb = NULL;
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++)
{
ws2811->channel[chan].leds = NULL;
}
// Allocate the LED buffers
for (chan = 0; chan < RPI_PWM_CHANNELS; chan++)
{
ws2811_channel_t *channel = &ws2811->channel[chan];
channel->leds = malloc(sizeof(ws2811_led_t) * channel->count);
if (!channel->leds)
{
ws2811_cleanup(ws2811);
return WS2811_ERROR_OUT_OF_MEMORY;
}
memset(channel->leds, 0, sizeof(ws2811_led_t) * channel->count);
if (!channel->strip_type)
{
channel->strip_type=WS2811_STRIP_RGB;
}
// Set default uncorrected gamma table
if (!channel->gamma)
{