-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreveal-lkpy.tex
107 lines (86 loc) · 3.87 KB
/
reveal-lkpy.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
\documentclass[sigconf]{acmart}
\usepackage{booktabs} % For formal tables
\usepackage{minted}
% Copyright
%\setcopyright{none}
%\setcopyright{acmcopyright}
%\setcopyright{acmlicensed}
\setcopyright{rightsretained}
%\setcopyright{usgov}
%\setcopyright{usgovmixed}
%\setcopyright{cagov}
%\setcopyright{cagovmixed}
\settopmatter{printacmref=false}
% DOI
\acmDOI{}
% ISBN
\acmISBN{}
%Conference
\acmConference[REVEAL'18]{Workshop on Offline Evaluation for Recommender Systems}{October 7, 2018}{Vancouver, BC, Canada}
\acmYear{2018}
\copyrightyear{2018}
% \acmPrice{15.00}
% \acmSubmissionID{123-A12-B3}
\begin{document}
\title{The LKPY Package for Recommender Systems Experiments}
\subtitle{Next-Generation Tools and Lessons Learned from the LensKit Project}
\author{Michael D. Ekstrand}
\orcid{0000-0003-2467-0108}
\affiliation{%
\institution{People \& Information Research Team\\
Boise State University}
\streetaddress{1910 University Drive}
\city{Boise}
\state{ID}
\postcode{83725-2055}
}
\email{[email protected]}
% The default list of authors is too long for headers.
% \renewcommand{\shortauthors}{B. Trovato et al.}
\begin{abstract}
Since 2010, we have built and maintained LensKit, an open-source toolkit for building, researching, and learning about recommender systems.
We have successfully used the software in a wide range of recommender systems experiments, to support education in traditional classroom and online settings, and as the algorithmic backend for user-facing recommendation services in movies and books.
This experience, along with community feedback, has surfaced a number of challenges with LensKit's design and environmental choices.
In response to these challenges, we are developing a new set of tools that leverage the PyData stack to enable the kinds of research experiments and educational experiences that we have been able to deliver with LensKit, along with new experimental structures that the existing code makes difficult.
The result is a set of research tools that should significantly increase research velocity and provide much smoother integration with other software such as Keras while maintaining the same level of reproducibility as a LensKit experiment.
In this paper, we reflect on the LensKit project, particularly on our experience using it for offline evaluation experiments, and describe the next-generation LKPY tools for enabling new offline evaluations and experiments with flexible, open-ended designs and well-tested evaluation primitives.
\end{abstract}
%
% The code below should be generated by the tool at
% http://dl.acm.org/ccs.cfm
% Please copy and paste the code instead of the example below.
%
% \begin{CCSXML}
% <ccs2012>
% <concept>
% <concept_id>10010520.10010553.10010562</concept_id>
% <concept_desc>Computer systems organization~Embedded systems</concept_desc>
% <concept_significance>500</concept_significance>
% </concept>
% <concept>
% <concept_id>10010520.10010575.10010755</concept_id>
% <concept_desc>Computer systems organization~Redundancy</concept_desc>
% <concept_significance>300</concept_significance>
% </concept>
% <concept>
% <concept_id>10010520.10010553.10010554</concept_id>
% <concept_desc>Computer systems organization~Robotics</concept_desc>
% <concept_significance>100</concept_significance>
% </concept>
% <concept>
% <concept_id>10003033.10003083.10003095</concept_id>
% <concept_desc>Networks~Network reliability</concept_desc>
% <concept_significance>100</concept_significance>
% </concept>
% </ccs2012>
% \end{CCSXML}
% \ccsdesc[500]{Computer systems organization~Embedded systems}
% \ccsdesc[300]{Computer systems organization~Redundancy}
% \ccsdesc{Computer systems organization~Robotics}
% \ccsdesc[100]{Networks~Network reliability}
\keywords{toolkits, collaborative filtering}
\maketitle
\input{lkpy-body}
\bibliographystyle{ACM-Reference-Format}
\bibliography{lkpy}
\end{document}