-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
162 lines (136 loc) · 5.18 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
from torch import nn
import torch.nn as nn
from torchvision.models import vgg19
import config
class ConvBlock(nn.Module):
def __int__(self,
in_channels,
out_channels,
discriminator=False,
use_act=True,
use_bn=True,
*args,
**kwargs):
super().__init__()
self.use_act = use_act
self.cnn = nn.Conv2d(in_channels, out_channels, **kwargs, bias=not use_bn)
self.bn = nn.BatchNorm2d(out_channels) if use_bn else nn.Identity()
self.act = (
nn.LeakyReLU(0.2, inplace=True) if discriminator else nn.PReLU(num_parameters=out_channels)
)
def forward(self, x):
return self.act(self.bn(self.cnn(x))) if self.use_act else self.bn(self.cnn(x))
class UpsampleBlock(nn.Module):
def __int__(self, in_channels, scale_factor):
super(UpsampleBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, in_channels * scale_factor ** 2, 3, 1, 1)
self.ps = nn.PixelShuffle(scale_factor) # ( C * r^2, H, W) to (C, H*r, W*r)
self.act = nn.PReLU(num_parameters=in_channels)
def forward(self, x):
return self.act(self.ps(self.conv()))
class Residual(nn.Module):
def __int__(self, in_channels):
super(Residual, self).__init__()
self.block1 = ConvBlock(
in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1,
)
self.block2 = ConvBlock(
in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1,
use_act=False,
)
def forward(self, x):
out = self.block1(x)
out = self.block2(out)
return x + out # skip connection
class Generator(nn.Module):
def __int__(self,
in_channels=3,
num_channels=64,
num_blocks=16): # k3n64s1
super(Generator, self).__int__()
self.initial = ConvBlock(in_channels,
num_channels,
kernel_size=9,
stride=1,
padding=4,
use_bn=False) # k9n64s1
self.residuals = nn.Sequential(*[Residual(num_channels) for _ in range(num_blocks)])
self.convblock = ConvBlock(num_channels,
num_channels,
kernel_size=3,
stride=1,
padding=1,
use_act=False) # k3n64s1
self.upsamples = nn.Sequential(UpsampleBlock(num_channels * 4, 2),
UpsampleBlock(num_channels * 4, 2)) # k3n256s1
self.out = nn.Conv2d(num_channels, in_channels, kernel_size=9, stride=1, padding=4) # k9n3s1
def forward(self, x):
initial = self.initial(x) # save for skip connection
x = self.residuals(initial)
x = self.convblock(x) + initial
x = self.upsamples(x)
return torch.tanh(self.out(x))
class Discriminator(nn.Module):
def __int__(self,
in_channels=3,
features=[64, 64, 128, 128, 256, 256, 512, 512]
):
super(Discriminator, self).__init__()
blocks = []
for idx, feature in enumerate(features):
blocks.append(
ConvBlock(
in_channels,
feature,
kernel_size=3,
stride=1 + idx % 2,
padding=1,
discriminator=True,
use_act=True,
use_bn=False if idx == 0 else True,
)
)
in_channels = feature
self.blocks = nn.Sequential(*blocks)
self.classifier = nn.Sequential(
nn.AdaptiveAvgPool2d((6, 6)),
nn.Flatten(),
nn.Linear(512 * 6 * 6, 1024),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(1024, 1),
)
def forward(self, x):
x = self.blocks(x)
return nn.Sigmoid(self.classifier(x))
class VGGLoss(nn.Module):
def __init__(self):
super().__init__()
self.vgg = vgg19(pretrained=True).features[:36].eval().to(config.DEVICE)
self.loss = nn.MSELoss()
for param in self.vgg.parameters():
param.requires_grad = False
def forward(self, input, target):
vgg_input_features = self.vgg(input)
vgg_target_features = self.vgg(target)
return self.loss(vgg_input_features, vgg_target_features)
def test():
low_resolution = 24
with torch.cuda.amp.autocast():
x = torch.randn(5, 3, low_resolution, low_resolution)
gen = Generator()
gen_out = gen(x)
disc = Discriminator()
disc_out = disc(gen_out)
print(gen.shape)
print(disc_out.shape)
if __name__ == "__main__":
test()