-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_individual_images.m
213 lines (189 loc) · 12.1 KB
/
save_individual_images.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
function success = save_individual_images(folder_name)
% tracks and saves individual worms for all the images in a directory
addpath(genpath(pwd))
parameters = load_parameters(folder_name); %load experiment parameters
%% STEP 1: initialize %%
number_of_images_for_median_projection = parameters.PostAnalysisNumberofMedianFilterImages;
ImageSize = 2*round(parameters.TrackingWormBoxHalfSize * parameters.CameraPixeltommConversion);
image_size = [ImageSize, ImageSize];
MinTrackingWormAreaPixels = parameters.CameraPixeltommConversion*parameters.CameraPixeltommConversion*parameters.TrackingMinWormArea;
%% STEP 2: Load images and labview tracks from the directory %%
camera_image_directory = [folder_name, filesep, 'DecodedCameraFrames', filesep];
image_files = dir([camera_image_directory, '*.png']); %get all the image files
Tracks = load_labview_tracks(folder_name, parameters);
if isempty(Tracks)
error('Empty Tracks');
end
%% STEP 3: Get the median projection for use as background%%
medianProj = imread([camera_image_directory, image_files(1).name]);
medianProjCount = min(number_of_images_for_median_projection, length(image_files) - 1);
medianProj = zeros(size(medianProj,1), size(medianProj,2), medianProjCount);
for frame_index = 1:medianProjCount
curImage = imread([camera_image_directory, image_files(floor((length(image_files)-1)*frame_index/medianProjCount)).name]);
medianProj(:,:,frame_index) = curImage;
end
medianProj = median(medianProj, 3);
medianProj = uint8(medianProj);
%% STEP 4: Post-Track Filtering to get rid of invalid tracks, recaculate some parameters, and collect statistics %%
DeleteTracks = false(1,length(Tracks));
first_frames = zeros(1,length(Tracks));
last_frames = zeros(1,length(Tracks));
min_pixel_displacement = parameters.MinDisplacement * parameters.CameraPixeltommConversion;
if ~isempty(Tracks)
Tracks(1).DeletionReason = [];
end
for track_index = 1:length(Tracks)
first_frames(track_index) = Tracks(track_index).Frames(1);
last_frames(track_index) = Tracks(track_index).Frames(end);
end
for track_index = 1:length(Tracks)
if length(Tracks(track_index).Frames) < parameters.MinTrackLength*parameters.SampleRate
%get rid of tracks that are too short
Tracks(track_index).DeletionReason = [Tracks(track_index).DeletionReason, 'Short Track length '];
DeleteTracks(track_index) = true;
elseif mean(Tracks(track_index).Size) < parameters.MinAverageWormArea
%get rid of worms that are too small
Tracks(track_index).DeletionReason = [Tracks(track_index).DeletionReason, 'Small Average Worm Size '];
DeleteTracks(track_index) = true;
else
%find the maximum displacement from the first time point.
%correct for dirts that don't move
position_relative_to_start = transpose(Tracks(track_index).Path - repmat(Tracks(track_index).Path(1,:),size(Tracks(track_index).Path,1),1));
euclideian_distances_relative_to_start = sqrt(sum(position_relative_to_start.^2,1)); %# The two-norm of each column
if max(euclideian_distances_relative_to_start) < min_pixel_displacement
Tracks(track_index).DeletionReason = [Tracks(track_index).DeletionReason, 'Short Displacement '];
DeleteTracks(track_index) = true;
end
end
end
%process and save deleted tracks
if parameters.TrackingDebugMode
deleted_tracks = Tracks(DeleteTracks);
if ~isempty(deleted_tracks)
fields_to_keep = {'WormIndex','Path','Size','Frames','DeletionReason'};
track_field_names = fieldnames(deleted_tracks);
fields_for_removal = setdiff(track_field_names,fields_to_keep);
deleted_tracks = rmfield(deleted_tracks,fields_for_removal);
saveFileName = [folder_name, filesep, 'tracking_deleted_tracks.mat'];
save(saveFileName, 'deleted_tracks', '-v7.3');
end
end
Tracks(DeleteTracks) = [];
Tracks = rmfield(Tracks,'DeletionReason');
%recalculate speed and direction
for track_index = 1:length(Tracks)
% Smooth track data by rectangular sliding window of size WinSize;
Tracks(track_index).SmoothX = RecSlidingWindow(Tracks(track_index).Path(:,1)', parameters.TrackingSmoothingWindow*parameters.SampleRate);
Tracks(track_index).SmoothY = RecSlidingWindow(Tracks(track_index).Path(:,2)', parameters.TrackingSmoothingWindow*parameters.SampleRate);
% Calculate Direction & Speed
Xdif = CalcDif(Tracks(track_index).SmoothX, parameters.TrackingSmoothingWindow*parameters.SampleRate) * parameters.SampleRate;
Ydif = -CalcDif(Tracks(track_index).SmoothY, parameters.TrackingSmoothingWindow*parameters.SampleRate) * parameters.SampleRate; % Negative sign allows "correct" direction
% cacluation (i.e. 0 = Up/North)
Ydif(Ydif == 0) = eps; % Avoid division by zero in direction calculation
Tracks(track_index).Direction = atan(Xdif./Ydif) * 360/(2*pi); % In degrees, 0 = Up ("North")
NegYdifIndexes = find(Ydif < 0);
Index1 = find(Tracks(track_index).Direction(NegYdifIndexes) <= 0);
Index2 = find(Tracks(track_index).Direction(NegYdifIndexes) > 0);
Tracks(track_index).Direction(NegYdifIndexes(Index1)) = Tracks(track_index).Direction(NegYdifIndexes(Index1)) + 180;
Tracks(track_index).Direction(NegYdifIndexes(Index2)) = Tracks(track_index).Direction(NegYdifIndexes(Index2)) - 180;
Tracks(track_index).Speed = sqrt(Xdif.^2 + Ydif.^2) / parameters.CameraPixeltommConversion; % In mm/sec
end
%% STEP 6: save each worms images, recalculate select stats%%
savePath = [folder_name, filesep, 'individual_worm_imgs', filesep];
if ~exist(savePath, 'dir')
mkdir(savePath)
end
delete_extra_individual_worm_images(folder_name, 0); %delete previous .mat files
frame_count = length(image_files)-1;
%get where each track begins and ends in terms of frames and put them
%in a sparse binary matrix
tracks_start_in_frame = logical(sparse(length(Tracks), frame_count));
tracks_end_in_frame = logical(sparse(length(Tracks), frame_count));
for track_index = 1:length(Tracks)
Tracks(track_index).Eccentricity = zeros(numel(Tracks(track_index).Frames),1); %preallocate for Eccentricity
tracks_start_in_frame(track_index, Tracks(track_index).Frames(1)) = true;
tracks_end_in_frame(track_index, Tracks(track_index).Frames(end)) = true;
end
current_image_stacks = [];
starting_binary_threshold = parameters.TrackingBinaryThresholdLevel / 255;
for frame_index = 1:frame_count
tracks_that_start_in_this_frame = find(tracks_start_in_frame(:,frame_index));
if ~isempty(tracks_that_start_in_this_frame)
%%%there are tracks that start in this frame%%%
previous_length = length(current_image_stacks);
current_image_stacks(previous_length+length(tracks_that_start_in_this_frame)).TrackIndex = []; %preallocate memory
for new_track_index = 1:length(tracks_that_start_in_this_frame)
track_index = tracks_that_start_in_this_frame(new_track_index);
current_image_stacks(previous_length+new_track_index).TrackIndex = track_index;
current_image_stacks(previous_length+new_track_index).Images = zeros([image_size, length(Tracks(track_index).Frames)], 'uint8');
end
end
%%%image processing%%%
curImage = imread([camera_image_directory, image_files(frame_index).name]);
subtractedImage = curImage - medianProj; %subtract median projection - imageBackground
% Convert frame to a binary image
for image_stack_index = 1:length(current_image_stacks)
%for each track in this frame, get the cropped image
track_index = current_image_stacks(image_stack_index).TrackIndex;
in_track_index = frame_index - Tracks(track_index).Frames(1) + 1;
centroid_x = double(round(Tracks(track_index).Path(in_track_index,1)));
centroid_y = double(round(Tracks(track_index).Path(in_track_index,2)));
image_top_left_corner_x = centroid_x-image_size(1)/2;
image_top_left_corner_y = centroid_y-image_size(2)/2;
image_bottom_right_corner_x = image_top_left_corner_x+image_size(1);
image_bottom_right_corner_y = image_top_left_corner_y+image_size(2);
%lets binary threshold here. make sure that our blob is at
%least the min size requirement. lower thresh if we need it
cropped_image = imcrop(subtractedImage, [image_top_left_corner_x, image_top_left_corner_y, (image_size-1)]);
current_thresholded_area = 0;
current_threshold = starting_binary_threshold;
while current_thresholded_area < MinTrackingWormAreaPixels && current_threshold > 0
cropped_mask_image = im2bw(cropped_image, current_threshold); % For tracking bright objects on a dark background
[cropped_mask_image_L,numComponents] = bwlabel(cropped_mask_image);
% take the region closest to the worm image center
if numComponents > 0
STATS = regionprops(cropped_mask_image_L, {'Area','Eccentricity','Centroid'});
[~,closest_index] = pdist2(vertcat(STATS.Centroid),image_size/2,'euclidean','Smallest',1);
current_thresholded_area = STATS(closest_index).Area;
else
current_thresholded_area = 0;
end
current_threshold = current_threshold - (1/255); %lower threshold to keep going
end
%replace the area, eccentricity calculations for this track
Tracks(track_index).Size(in_track_index) = STATS(closest_index).Area;
Tracks(track_index).Eccentricity(in_track_index) = STATS(closest_index).Eccentricity;
single_worm = cropped_mask_image_L == closest_index; %get an binary mask of largest blob in the cropped image
single_worm = bwmorph(single_worm, 'fill');
worm_frame = imcrop(subtractedImage, [image_top_left_corner_x, image_top_left_corner_y, (image_size-1)]);
worm_frame(~single_worm) = 0; %mask
%pad the image if necessary
if image_top_left_corner_x < 1 || image_top_left_corner_y < 1
%pad the front
worm_frame = padarray(worm_frame, [max(1-image_top_left_corner_y,0), max(1-image_top_left_corner_x,0)], 0, 'pre');
end
if image_bottom_right_corner_x > size(subtractedImage,2) || image_bottom_right_corner_y > size(subtractedImage,1)
%pad the end
worm_frame = padarray(worm_frame, [max(image_bottom_right_corner_y-size(subtractedImage,1)-1,0), max(image_bottom_right_corner_x-size(subtractedImage,2)-1,0)], 0, 'post');
end
current_image_stacks(image_stack_index).Images(:,:,in_track_index) = worm_frame;
end
tracks_that_end_in_this_frame = find(tracks_end_in_frame(:,frame_index));
if ~isempty(tracks_that_end_in_this_frame)
%%%there are tracks that end in this frame, do the computation%%%
image_stack_indecies = [];
for ending_track_index = 1:length(tracks_that_end_in_this_frame)
track_index = tracks_that_end_in_this_frame(ending_track_index);
image_stack_index = find([current_image_stacks.TrackIndex] == track_index);
image_stack_indecies = [image_stack_indecies, image_stack_index];
worm_images = current_image_stacks(image_stack_index).Images;
save([folder_name, filesep, 'individual_worm_imgs', filesep, 'worm_', num2str(track_index), '.mat'], 'worm_images', '-v7.3');
end
current_image_stacks(image_stack_indecies) = []; %clear the memory of these images
end
end
%% STEP 5: Save the tracks %%
savetracks(Tracks,folder_name);
%% STEP FINAL: return
success = true;
end