forked from ashleylinder/ThesisCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fixPhotoBleach.m
159 lines (132 loc) · 4.67 KB
/
fixPhotoBleach.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
%% look at photobleach fit
%fits a sum of exponential to the red signal and plot the result
%for checking how the fit looks on individual neurons
nCheck = 23; %which neuron(s) to look at
for i = 1:length(nCheck)
x = 1:length(Ratio2(1,:));
y = rRaw(nCheck(i),:);
idx = find(isnan(y)==0);
f = fit(x(idx)',y(idx)','exp2');
fitFun(nCheck(i),:) = f.a*exp(f.b*x) + f.c*exp(f.d*x);
figure(i)
plot(y);
hold on;
plot(fitFun(nCheck(i),:));
end
%% Make the double exponential fit
Fexponent=fittype('a*exp(b*x)+c*exp(d*x)','dependent',{'y'},'independent',...
{'x'},'coefficients',{'a', 'b', 'c', 'd'});
fitOptions=fitoptions(Fexponent);
fitOptions.Lower=[0,-.2,0, -2];
fitOptions.Upper=[1000,0,10000,0];
minWindow=150;
min_quant=30;
%% PHOTOBLEACHING CORRECTION
% intialize photobleaching corrections
photoBleachingR=zeros(size(rRaw));
photoBleachingG=zeros(size(gRaw));
for i=1:size(rRaw,1)
try
%%
%initialize x values for fitting y=f(x)
xVals=(1:size(rRaw,2))';
% only take values where bot R and G are present
present=(~isnan(rRaw(i,:)+gRaw(i,:))') ;
present=present & (rRaw(i,:)~=0)' & (gRaw(i,:) ~=0)';
xVals=xVals(present);
% get R and G traces
rVals=rRaw(i,:)';
gVals=gRaw(i,:)';
gVals=gVals(present);
rVals=rVals(present);
% do ord filtering
gVals=ordfilt2(gVals,min_quant,true(minWindow,1));
rVals=ordfilt2(rVals,min_quant,true(minWindow,1));
%set up more fitting parameters for Red, and fit starting point
fitOptions.StartPoint=[range(rVals(rVals~=0)),-.0006,range(rVals(rVals~=0)), -.0006];
fitOptions.Weights=zeros(size(rVals));
fitOptions.Weights(minWindow:end-minWindow)=1;
%do exponential fitting
[f,fout]=fit(xVals,rVals,Fexponent,fitOptions);
%if fit is bad, try fit linear to loglinear plot
if fout.rsquare<.9
logVals=log(rVals);
logVals=logVals(rVals~=0);
logXvals=xVals(rVals~=0); %not actually logging xvals
expFit=polyfit(logXvals,logVals,1);
f.a=exp(expFit(2));
f.b=expFit(1);
end
% %do the same for the green
% fitOptions.StartPoint=[range(gVals),-.001,min(gVals), -.001];
% fitOptions.Weights=zeros(size(gVals));
% fitOptions.Weights(minWindow:end-minWindow)=1;
%
% %green always has a strange bump in intensity at the start, fit the
% %exponential starting after this by setting weights for the first
% %part to zero.
% [~,maxPos]=max(gVals(1:300));
% fitOptions.Weights(1:maxPos)=0;
%
% [g,gout]=fit(xVals,gVals,Fexponent,fitOptions);
%
% if f(1)>(max(rRaw(i,:))+100)
% f=fit(xVals,rVals,'poly1');
% if f.p1>0
% f.p1=0;
% end
% end
% if g(1)>(max(gRaw(i,:))+1000)
% g=fit(xVals,gVals,'poly1');
% if g.p1>0
% g.p1=0;
% end
% end
%plot some of the results, turned off for now
if 0
subplot(2,1,1);
plot(gRaw(i,:))
hold on
plot(g)
ylim([0 g(0)+100])
hold off
subplot(2,1,2);
plot(rRaw(i,:))
hold on
plot(f)
ylim([0 f(0)+100]);
hold off
drawnow
pause(.1)
end
limit=min(3000,size(rRaw,2));
%calculating photobleaching correction from exponential fits
photoBleachingR(i,:)=f((1:size(rRaw,2)))-f(limit);
% photoBleachingG(i,:)=g((1:size(rRaw,2)))-g(limit);
catch me
me
end
end
%%
%apply photobleaching correction, nan the values that are very bright or
%dark
rPhotoCorr=rRaw-photoBleachingR ;
RvalstempZ=bsxfun(@minus,rPhotoCorr,nanmean(rPhotoCorr,2));
RvalstempZ=bsxfun(@rdivide,RvalstempZ,nanstd(RvalstempZ,[],2));
rPhotoCorr(RvalstempZ<-2|RvalstempZ>5|rPhotoCorr<40)=nan;
% gPhotoCorr=gRaw-photoBleachingG ;
% GvalstempZ=bsxfun(@minus,gPhotoCorr,nanmean(gPhotoCorr,2));
% GvalstempZ=bsxfun(@rdivide,GvalstempZ,nanstd(GvalstempZ,[],2));
% gPhotoCorr(GvalstempZ>5|gPhotoCorr<0)=nan;
%% apply smoothing and fold change over baseline calculation
%Process red and green signals, functions below.
R2=processSignal(rPhotoCorr);
%G2=processSignal(gPhotoCorr);
%chop out flashes or other strange values
nanmapr=R2>4|isnan(R2);
%nanmapg=G2>4|isnan(G2);
%G2(nanmapg)=nan;
%gPhotoCorr(nanmapg)=nan;
rPhotoCorr(nanmapr)=nan;
%now, process the ratio
Ratio2=processRatio(rPhotoCorr,gPhotoCorr);