-
Notifications
You must be signed in to change notification settings - Fork 0
/
Problem0038.py
54 lines (45 loc) · 1.74 KB
/
Problem0038.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Enonce = """
Pandigital multiples
Problem 38
Take the number 192 and multiply it by each of 1, 2, and 3:
192 x 1 = 192
192 x 2 = 384
192 x 3 = 576
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3)
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n > 1?
"""
import EulerTools
import time
def main():
print(40*"=")
print(Enonce)
print(40*"-")
Solution = 0
maxi = 9_999 #200 #9_999
start = time.perf_counter()
for i in range(1, maxi+1):
concatenate_product = ""
for m in range(1, 11):
concatenate_product += str(i*m)
if len(concatenate_product) >= 9:
break
if len(concatenate_product) != 9:
continue
for integer in range(1, 10):
if str(integer) not in concatenate_product:
break
else:
print(f"pandigital 9-digit : {concatenate_product} is formed by concatenated product {i} x {list(range(1, m+1))}")
if int(concatenate_product) > Solution:
Solution = int(concatenate_product)
print(f" *** New Max !!! *** ")
end = time.perf_counter()
print(f"{Solution} en {round(end-start,2)} secondes")
print(f"Largest 1 to 9 pandigital 9-digit number is {Solution}")
print(40*"-")
print(f"Solution = {Solution}")
print(40*"=")
if __name__ == "__main__":
# execute only if run as a script
main()