Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Line parameters of Hb_whole_br in output fits table do not seem right #72

Open
smat-astr opened this issue Nov 25, 2024 · 1 comment
Open

Comments

@smat-astr
Copy link

Hi,

I am using PyQSOFit version 2.1 and MCMC to compute errors. I have noticed that, while the parameters for Ha_whole_br in the output fits table align with the printed outputs of the code and the parameter limits I set, this is not true for the parameters of Hb_whole_br. The issue is illustrated in the following example of the output of the code:

fwhm, sigma, ew, peak, area, snr = q_hprior.line_prop_from_name('Hb_br', 'broad')
print("Broad Hb:")
print("FWHM (km/s)", np.round(fwhm, 1))
print("Sigma (km/s)", np.round(sigma, 1))
print("EW (A)", np.round(ew, 1))
print("Peak (A)", np.round(peak, 1))
print("Area (10^(-17) erg/s/cm^2)", np.round(area, 1))
print("")

fwhm, sigma, ew, peak, area, snr = q_hprior.line_prop_from_name('Ha_br', 'broad')
print("Broad Ha:")
print("FWHM (km/s)", np.round(fwhm, 1))
print("Sigma (km/s)", np.round(sigma, 1))
print("EW (A)", np.round(ew, 1))
print("Peak (A)", np.round(peak, 1))
print("Area (10^(-17) erg/s/cm^2)", np.round(area, 1))
print("")

print(q_hprior.line_result_name)
print('')
print(q_hprior.line_result)

My output:

Broad Hb:
FWHM (km/s) 9298.4
Sigma (km/s) 3896.4
EW (A) 23.2
Peak (A) 4841.6
Area (10^(-17) erg/s/cm^2) 11.9

Broad Ha:
FWHM (km/s) 19619.0
Sigma (km/s) 8217.5
EW (A) 356.4
Peak (A) 6536.8
Area (10^(-17) erg/s/cm^2) 88.3

['1_complex_name' '1_line_status' '1_line_min_chi2' '1_line_bic'
'1_line_red_chi2' '1_niter' '1_ndof' '2_complex_name' '2_line_status'
'2_line_min_chi2' '2_line_bic' '2_line_red_chi2' '2_niter' '2_ndof'
'3_complex_name' '3_line_status' '3_line_min_chi2' '3_line_bic'
'3_line_red_chi2' '3_niter' '3_ndof' 'OII3728_1_scale'
'OII3728_1_scale_err' 'OII3728_1_centerwave' 'OII3728_1_centerwave_err'
'OII3728_1_sigma' 'OII3728_1_sigma_err' 'Hb_br_1_scale'
'Hb_br_1_scale_err' 'Hb_br_1_centerwave' 'Hb_br_1_centerwave_err'
'Hb_br_1_sigma' 'Hb_br_1_sigma_err' 'Hb_br_2_scale' 'Hb_br_2_scale_err'
'Hb_br_2_centerwave' 'Hb_br_2_centerwave_err' 'Hb_br_2_sigma'
'Hb_br_2_sigma_err' 'Hb_na_1_scale' 'Hb_na_1_scale_err'
'Hb_na_1_centerwave' 'Hb_na_1_centerwave_err' 'Hb_na_1_sigma'
'Hb_na_1_sigma_err' 'OIII4959c_1_scale' 'OIII4959c_1_scale_err'
'OIII4959c_1_centerwave' 'OIII4959c_1_centerwave_err' 'OIII4959c_1_sigma'
'OIII4959c_1_sigma_err' 'OIII5007c_1_scale' 'OIII5007c_1_scale_err'
'OIII5007c_1_centerwave' 'OIII5007c_1_centerwave_err' 'OIII5007c_1_sigma'
'OIII5007c_1_sigma_err' 'OIII4959w_1_scale' 'OIII4959w_1_scale_err'
'OIII4959w_1_centerwave' 'OIII4959w_1_centerwave_err' 'OIII4959w_1_sigma'
'OIII4959w_1_sigma_err' 'OIII5007w_1_scale' 'OIII5007w_1_scale_err'
'OIII5007w_1_centerwave' 'OIII5007w_1_centerwave_err' 'OIII5007w_1_sigma'
'OIII5007w_1_sigma_err' 'Ha_br_1_scale' 'Ha_br_1_scale_err'
'Ha_br_1_centerwave' 'Ha_br_1_centerwave_err' 'Ha_br_1_sigma'
'Ha_br_1_sigma_err' 'Ha_br_2_scale' 'Ha_br_2_scale_err'
'Ha_br_2_centerwave' 'Ha_br_2_centerwave_err' 'Ha_br_2_sigma'
'Ha_br_2_sigma_err' 'Ha_na_1_scale' 'Ha_na_1_scale_err'
'Ha_na_1_centerwave' 'Ha_na_1_centerwave_err' 'Ha_na_1_sigma'
'Ha_na_1_sigma_err' 'NII6549_1_scale' 'NII6549_1_scale_err'
'NII6549_1_centerwave' 'NII6549_1_centerwave_err' 'NII6549_1_sigma'
'NII6549_1_sigma_err' 'NII6585_1_scale' 'NII6585_1_scale_err'
'NII6585_1_centerwave' 'NII6585_1_centerwave_err' 'NII6585_1_sigma'
'NII6585_1_sigma_err' 'SII6718_1_scale' 'SII6718_1_scale_err'
'SII6718_1_centerwave' 'SII6718_1_centerwave_err' 'SII6718_1_sigma'
'SII6718_1_sigma_err' 'SII6732_1_scale' 'SII6732_1_scale_err'
'SII6732_1_centerwave' 'SII6732_1_centerwave_err' 'SII6732_1_sigma'
'SII6732_1_sigma_err' 'OII_whole_br_fwhm' 'OII_whole_br_fwhm_err'
'OII_whole_br_sigma' 'OII_whole_br_sigma_err' 'OII_whole_br_ew'
'OII_whole_br_ew_err' 'OII_whole_br_peak' 'OII_whole_br_peak_err'
'OII_whole_br_area' 'OII_whole_br_area_err' 'OII_whole_br_snr'
'OII_whole_br_snr_err' 'Hb_whole_br_fwhm' 'Hb_whole_br_fwhm_err'
'Hb_whole_br_sigma' 'Hb_whole_br_sigma_err' 'Hb_whole_br_ew'
'Hb_whole_br_ew_err' 'Hb_whole_br_peak' 'Hb_whole_br_peak_err'
'Hb_whole_br_area' 'Hb_whole_br_area_err' 'Hb_whole_br_snr'
'Hb_whole_br_snr_err' 'Ha_whole_br_fwhm' 'Ha_whole_br_fwhm_err'
'Ha_whole_br_sigma' 'Ha_whole_br_sigma_err' 'Ha_whole_br_ew'
'Ha_whole_br_ew_err' 'Ha_whole_br_peak' 'Ha_whole_br_peak_err'
'Ha_whole_br_area' 'Ha_whole_br_area_err' 'Ha_whole_br_snr'
'Ha_whole_br_snr_err']

['OII' '1' '132.72738471801887' '59.748778656048195' '3.3181846179504717'
'53' '40' 'Hb' '1' '499.23971661142843' '249.27929066638114'
'4.230845056029055' '132' '118' 'Ha' '1' '485.36347667516674'
'221.31122573125992' '4.372643934010511' '183' '111' '1.1483558548519568'
'0.26326059996082646' '8.224241979557378' '0.00028730754668426783'
'0.0009591574906740917' '0.00020760284380930719' '0.03722855357324306'
'0.015272657022779423' '8.485116742267978' '0.000844865776095105'
'0.013226182405518368' '0.0066861916819435695' '0.03722855357324306'
'0.015004897753986184' '8.485116742300768' '0.0021344218621486277'
'0.01322618241090765' '0.009826920000161738' '0.12554235429007576'
'0.05220279011527776' '8.488974702863302' '0.00013432613368813406'
'0.0016607914230403404' '0.00028227495785784263' '0.137848066295021'
'0.05891032937538315' '8.508851182965842' '0.0' '0.0016607914230403404'
'0.0' '0.4986450141686305' '0.16997332641749996' '8.518469942121115'
'0.0' '0.0016607914230403404' '0.0' '0.06668166019352384'
'0.035657278836588' '8.508317195508802' '0.00032604672055924766'
'0.0038754327612850396' '0.0006301478500668671' '0.1983763153745599'
'0.09775727516909963' '8.517935954664075' '0.0' '0.0038754327612850396'
'0.0' '0.19303891818367447' '0.01795127151906674' '8.785208929087982'
'0.0005433168278932143' '0.027903731471066007' '0.0034875218955351533'
'0.007773781618425346' '0.005012689905572788' '8.793688716042691'
'0.001337664771662972' '0.0018878588816741712' '0.0015009525897937512'
'0.7115996680795433' '0.07975361431610523' '8.789624187190398'
'3.283416287480634e-05' '0.0011098838123932858' '4.335528301836267e-05'
'0.9282580260006057' '0.03445582920265977' '8.787372562129363' '0.0'
'0.0011098838123932858' '0.0' '2.784774078001817' '0.0'
'8.792767497737273' '0.0' '0.0011098838123932858' '0.0'
'0.45816517246777266' '0.042172673141741834' '8.81276414080368' '0.0'
'0.0011098838123932858' '0.0' '0.45816517246777266' '0.0'
'8.814902278621062' '0.0' '0.0011098838123932858' '0.0' '0.0' '0.0' '0.0'
'0.0' '0.0' '0.0' '0.0' '0.0' '0.0' '0.0' '0.0' '0.0' '3560.522782682529'
'825.0964716195697' '5458.389872903858' '1016.9791593849909'
'48.84811234523053' '12.85102486862834' '5002.913093402928'
'0.4901713571921391' '24.773157153462876' '6.479202501310278'
'1.3735257711683038' '0.8171204303286859' '19619.01285524007'
'2817.6215679216803' '8217.48423617239' '1041.9145525478257'
'356.3540085509411' '40.57390315653569' '6536.8385738849065'
'22.244716832328322' '88.29776939529299' '9.161242093903802'
'0.9615227075716244' '0.13533562174720581']

Since I would like to use the new method to decompose the host galaxy, is there a way I can obtain the Hb_whole_br parameters (along with the corresponding errors) using the latest version of PyQSOFit?

Thank you for your help,

@legolason
Copy link
Owner

you mean here are 0.0 for the whole components?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants