You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am using PyQSOFit version 2.1 and MCMC to compute errors. I have noticed that, while the parameters for Ha_whole_br in the output fits table align with the printed outputs of the code and the parameter limits I set, this is not true for the parameters of Hb_whole_br. The issue is illustrated in the following example of the output of the code:
Since I would like to use the new method to decompose the host galaxy, is there a way I can obtain the Hb_whole_br parameters (along with the corresponding errors) using the latest version of PyQSOFit?
Thank you for your help,
The text was updated successfully, but these errors were encountered:
Hi,
I am using PyQSOFit version 2.1 and MCMC to compute errors. I have noticed that, while the parameters for Ha_whole_br in the output fits table align with the printed outputs of the code and the parameter limits I set, this is not true for the parameters of Hb_whole_br. The issue is illustrated in the following example of the output of the code:
fwhm, sigma, ew, peak, area, snr = q_hprior.line_prop_from_name('Hb_br', 'broad')
print("Broad Hb:")
print("FWHM (km/s)", np.round(fwhm, 1))
print("Sigma (km/s)", np.round(sigma, 1))
print("EW (A)", np.round(ew, 1))
print("Peak (A)", np.round(peak, 1))
print("Area (10^(-17) erg/s/cm^2)", np.round(area, 1))
print("")
fwhm, sigma, ew, peak, area, snr = q_hprior.line_prop_from_name('Ha_br', 'broad')
print("Broad Ha:")
print("FWHM (km/s)", np.round(fwhm, 1))
print("Sigma (km/s)", np.round(sigma, 1))
print("EW (A)", np.round(ew, 1))
print("Peak (A)", np.round(peak, 1))
print("Area (10^(-17) erg/s/cm^2)", np.round(area, 1))
print("")
My output:
Broad Hb:
FWHM (km/s) 9298.4
Sigma (km/s) 3896.4
EW (A) 23.2
Peak (A) 4841.6
Area (10^(-17) erg/s/cm^2) 11.9
Broad Ha:
FWHM (km/s) 19619.0
Sigma (km/s) 8217.5
EW (A) 356.4
Peak (A) 6536.8
Area (10^(-17) erg/s/cm^2) 88.3
['1_complex_name' '1_line_status' '1_line_min_chi2' '1_line_bic'
'1_line_red_chi2' '1_niter' '1_ndof' '2_complex_name' '2_line_status'
'2_line_min_chi2' '2_line_bic' '2_line_red_chi2' '2_niter' '2_ndof'
'3_complex_name' '3_line_status' '3_line_min_chi2' '3_line_bic'
'3_line_red_chi2' '3_niter' '3_ndof' 'OII3728_1_scale'
'OII3728_1_scale_err' 'OII3728_1_centerwave' 'OII3728_1_centerwave_err'
'OII3728_1_sigma' 'OII3728_1_sigma_err' 'Hb_br_1_scale'
'Hb_br_1_scale_err' 'Hb_br_1_centerwave' 'Hb_br_1_centerwave_err'
'Hb_br_1_sigma' 'Hb_br_1_sigma_err' 'Hb_br_2_scale' 'Hb_br_2_scale_err'
'Hb_br_2_centerwave' 'Hb_br_2_centerwave_err' 'Hb_br_2_sigma'
'Hb_br_2_sigma_err' 'Hb_na_1_scale' 'Hb_na_1_scale_err'
'Hb_na_1_centerwave' 'Hb_na_1_centerwave_err' 'Hb_na_1_sigma'
'Hb_na_1_sigma_err' 'OIII4959c_1_scale' 'OIII4959c_1_scale_err'
'OIII4959c_1_centerwave' 'OIII4959c_1_centerwave_err' 'OIII4959c_1_sigma'
'OIII4959c_1_sigma_err' 'OIII5007c_1_scale' 'OIII5007c_1_scale_err'
'OIII5007c_1_centerwave' 'OIII5007c_1_centerwave_err' 'OIII5007c_1_sigma'
'OIII5007c_1_sigma_err' 'OIII4959w_1_scale' 'OIII4959w_1_scale_err'
'OIII4959w_1_centerwave' 'OIII4959w_1_centerwave_err' 'OIII4959w_1_sigma'
'OIII4959w_1_sigma_err' 'OIII5007w_1_scale' 'OIII5007w_1_scale_err'
'OIII5007w_1_centerwave' 'OIII5007w_1_centerwave_err' 'OIII5007w_1_sigma'
'OIII5007w_1_sigma_err' 'Ha_br_1_scale' 'Ha_br_1_scale_err'
'Ha_br_1_centerwave' 'Ha_br_1_centerwave_err' 'Ha_br_1_sigma'
'Ha_br_1_sigma_err' 'Ha_br_2_scale' 'Ha_br_2_scale_err'
'Ha_br_2_centerwave' 'Ha_br_2_centerwave_err' 'Ha_br_2_sigma'
'Ha_br_2_sigma_err' 'Ha_na_1_scale' 'Ha_na_1_scale_err'
'Ha_na_1_centerwave' 'Ha_na_1_centerwave_err' 'Ha_na_1_sigma'
'Ha_na_1_sigma_err' 'NII6549_1_scale' 'NII6549_1_scale_err'
'NII6549_1_centerwave' 'NII6549_1_centerwave_err' 'NII6549_1_sigma'
'NII6549_1_sigma_err' 'NII6585_1_scale' 'NII6585_1_scale_err'
'NII6585_1_centerwave' 'NII6585_1_centerwave_err' 'NII6585_1_sigma'
'NII6585_1_sigma_err' 'SII6718_1_scale' 'SII6718_1_scale_err'
'SII6718_1_centerwave' 'SII6718_1_centerwave_err' 'SII6718_1_sigma'
'SII6718_1_sigma_err' 'SII6732_1_scale' 'SII6732_1_scale_err'
'SII6732_1_centerwave' 'SII6732_1_centerwave_err' 'SII6732_1_sigma'
'SII6732_1_sigma_err' 'OII_whole_br_fwhm' 'OII_whole_br_fwhm_err'
'OII_whole_br_sigma' 'OII_whole_br_sigma_err' 'OII_whole_br_ew'
'OII_whole_br_ew_err' 'OII_whole_br_peak' 'OII_whole_br_peak_err'
'OII_whole_br_area' 'OII_whole_br_area_err' 'OII_whole_br_snr'
'OII_whole_br_snr_err' 'Hb_whole_br_fwhm' 'Hb_whole_br_fwhm_err'
'Hb_whole_br_sigma' 'Hb_whole_br_sigma_err' 'Hb_whole_br_ew'
'Hb_whole_br_ew_err' 'Hb_whole_br_peak' 'Hb_whole_br_peak_err'
'Hb_whole_br_area' 'Hb_whole_br_area_err' 'Hb_whole_br_snr'
'Hb_whole_br_snr_err' 'Ha_whole_br_fwhm' 'Ha_whole_br_fwhm_err'
'Ha_whole_br_sigma' 'Ha_whole_br_sigma_err' 'Ha_whole_br_ew'
'Ha_whole_br_ew_err' 'Ha_whole_br_peak' 'Ha_whole_br_peak_err'
'Ha_whole_br_area' 'Ha_whole_br_area_err' 'Ha_whole_br_snr'
'Ha_whole_br_snr_err']
['OII' '1' '132.72738471801887' '59.748778656048195' '3.3181846179504717'
'53' '40' 'Hb' '1' '499.23971661142843' '249.27929066638114'
'4.230845056029055' '132' '118' 'Ha' '1' '485.36347667516674'
'221.31122573125992' '4.372643934010511' '183' '111' '1.1483558548519568'
'0.26326059996082646' '8.224241979557378' '0.00028730754668426783'
'0.0009591574906740917' '0.00020760284380930719' '0.03722855357324306'
'0.015272657022779423' '8.485116742267978' '0.000844865776095105'
'0.013226182405518368' '0.0066861916819435695' '0.03722855357324306'
'0.015004897753986184' '8.485116742300768' '0.0021344218621486277'
'0.01322618241090765' '0.009826920000161738' '0.12554235429007576'
'0.05220279011527776' '8.488974702863302' '0.00013432613368813406'
'0.0016607914230403404' '0.00028227495785784263' '0.137848066295021'
'0.05891032937538315' '8.508851182965842' '0.0' '0.0016607914230403404'
'0.0' '0.4986450141686305' '0.16997332641749996' '8.518469942121115'
'0.0' '0.0016607914230403404' '0.0' '0.06668166019352384'
'0.035657278836588' '8.508317195508802' '0.00032604672055924766'
'0.0038754327612850396' '0.0006301478500668671' '0.1983763153745599'
'0.09775727516909963' '8.517935954664075' '0.0' '0.0038754327612850396'
'0.0' '0.19303891818367447' '0.01795127151906674' '8.785208929087982'
'0.0005433168278932143' '0.027903731471066007' '0.0034875218955351533'
'0.007773781618425346' '0.005012689905572788' '8.793688716042691'
'0.001337664771662972' '0.0018878588816741712' '0.0015009525897937512'
'0.7115996680795433' '0.07975361431610523' '8.789624187190398'
'3.283416287480634e-05' '0.0011098838123932858' '4.335528301836267e-05'
'0.9282580260006057' '0.03445582920265977' '8.787372562129363' '0.0'
'0.0011098838123932858' '0.0' '2.784774078001817' '0.0'
'8.792767497737273' '0.0' '0.0011098838123932858' '0.0'
'0.45816517246777266' '0.042172673141741834' '8.81276414080368' '0.0'
'0.0011098838123932858' '0.0' '0.45816517246777266' '0.0'
'8.814902278621062' '0.0' '0.0011098838123932858' '0.0' '0.0' '0.0' '0.0'
'0.0' '0.0' '0.0' '0.0' '0.0' '0.0' '0.0' '0.0' '0.0' '3560.522782682529'
'825.0964716195697' '5458.389872903858' '1016.9791593849909'
'48.84811234523053' '12.85102486862834' '5002.913093402928'
'0.4901713571921391' '24.773157153462876' '6.479202501310278'
'1.3735257711683038' '0.8171204303286859' '19619.01285524007'
'2817.6215679216803' '8217.48423617239' '1041.9145525478257'
'356.3540085509411' '40.57390315653569' '6536.8385738849065'
'22.244716832328322' '88.29776939529299' '9.161242093903802'
'0.9615227075716244' '0.13533562174720581']
Since I would like to use the new method to decompose the host galaxy, is there a way I can obtain the Hb_whole_br parameters (along with the corresponding errors) using the latest version of PyQSOFit?
Thank you for your help,
The text was updated successfully, but these errors were encountered: