forked from valeoai/rangevit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
334 lines (274 loc) · 15.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# Copyright 2023 - Valeo Comfort and Driving Assistance
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import argparse
import os
import datetime
import time
import numpy as np
from option import Option
from train import Trainer
import models
import utils
import utils.tools as tools
from models.model_utils import resize_pos_embed
def build_rangevit_model(settings, pretrained_path=None):
model = models.RangeViT(
in_channels=settings.in_channels,
n_cls=settings.n_classes,
backbone=settings.vit_backbone,
image_size=settings.image_size,
pretrained_path=pretrained_path,
new_patch_size=settings.patch_size,
new_patch_stride=settings.patch_stride,
reuse_pos_emb=settings.reuse_pos_emb,
reuse_patch_emb=settings.reuse_patch_emb,
conv_stem=settings.conv_stem,
stem_base_channels=settings.stem_base_channels,
stem_hidden_dim=settings.D_h,
skip_filters=settings.skip_filters,
decoder=settings.decoder,
up_conv_d_decoder=settings.D_h,
up_conv_scale_factor=settings.patch_stride,
use_kpconv=settings.use_kpconv)
return model
class Experiment(object):
def __init__(self, settings: Option):
self.settings = settings
# Init gpu
tools.init_distributed_mode(self.settings)
torch.distributed.barrier()
self.settings.check_path()
# Set random seed
torch.manual_seed(self.settings.seed)
torch.cuda.manual_seed(self.settings.seed)
np.random.seed(self.settings.seed)
torch.cuda.set_device(self.settings.gpu)
torch.backends.cudnn.benchmark = True
# Init checkpoint
self.recorder = None
if tools.is_main_process():
self.recorder = utils.tools.Recorder(self.settings, self.settings.save_path)
self.prediction_path = os.path.join(self.settings.save_path, 'preds')
self.epoch_start = 0
# Init model
self.model = self._initModel()
# Init trainer
self.trainer = Trainer(self.settings, self.model, self.recorder)
# Load checkpoint
self._loadCheckpoint()
def _initModel(self):
# Model
model = build_rangevit_model(
self.settings,
pretrained_path=self.settings.pretrained_model)
# Freezing the ViT encoder weights.
if self.settings.freeze_vit_encoder:
print('==> Freeze the ViT encoder (without the pos_embed and stem)')
for param in model.rangevit.encoder.blocks.parameters():
param.requires_grad = False
model.rangevit.encoder.norm.weight.requires_grad = False
model.rangevit.encoder.norm.bias.requires_grad = False
# Unfreeze the LayerNorm layers
if self.settings.unfreeze_layernorm:
print('==> Unfreeze the LN layers')
model.rangevit.encoder.norm.weight.requires_grad = True
model.rangevit.encoder.norm.bias.requires_grad = True
for block_id in range(0, len(model.rangevit.encoder.blocks)):
model.rangevit.encoder.blocks[block_id].norm1.weight.requires_grad = True
model.rangevit.encoder.blocks[block_id].norm1.bias.requires_grad = True
model.rangevit.encoder.blocks[block_id].norm2.weight.requires_grad = True
model.rangevit.encoder.blocks[block_id].norm2.bias.requires_grad = True
if self.settings.unfreeze_attn:
print('==> Unfreeze the ATTN layers: qkv and proj')
for block_id in range(0, len(model.rangevit.encoder.blocks)):
model.rangevit.encoder.blocks[block_id].attn.qkv.weight.requires_grad = True
model.rangevit.encoder.blocks[block_id].attn.qkv.bias.requires_grad = True
model.rangevit.encoder.blocks[block_id].attn.proj.weight.requires_grad = True
model.rangevit.encoder.blocks[block_id].attn.proj.bias.requires_grad = True
if self.settings.unfreeze_ffn:
print('==> Unfreeze the FFN layers: mlp.fc1 and mlp.fc2')
for block_id in range(0, len(model.rangevit.encoder.blocks)):
model.rangevit.encoder.blocks[block_id].mlp.fc1.weight.requires_grad = True
model.rangevit.encoder.blocks[block_id].mlp.fc1.bias.requires_grad = True
model.rangevit.encoder.blocks[block_id].mlp.fc2.weight.requires_grad = True
model.rangevit.encoder.blocks[block_id].mlp.fc2.bias.requires_grad = True
if self.recorder is not None:
self.recorder.logger.info(f'model = {model}')
stats = model.counter_model_parameters()
if hasattr(model, 'counter_model_parameters'):
self.recorder.logger.info(f'Number of model parameters:')
for key, val in stats.items():
self.recorder.logger.info(f'==> {key}: {val}')
return model
def _loadCheckpoint(self):
if self.settings.checkpoint is not None:
print(f'Resume training from checkpoint {self.settings.checkpoint}')
if not os.path.isfile(self.settings.checkpoint):
raise FileNotFoundError('checkpoint file not found: {}'.format(self.settings.checkpoint))
checkpoint_data = torch.load(self.settings.checkpoint, map_location='cpu')
if self.settings.finetune_pretrained_model:
# When fine-tuning a segmentation model previously pre-trained to another dataset then it
# is necessary to adapt the (a) pos_embeds and (b) to remove the classification head.
image_size = self.model.rangevit.encoder.image_size
patch_stride = self.model.rangevit.encoder.patch_stride
if (self.model.rangevit.encoder.pos_embed.shape != checkpoint_data['model']['rangevit.encoder.pos_embed'].shape):
assert self.model.rangevit.encoder.pos_embed.shape[2] == checkpoint_data['model']['rangevit.encoder.pos_embed'].shape[2]
gs_new_h = int(image_size[0] // patch_stride[0])
gs_new_w = int(image_size[1] // patch_stride[1])
num_extra_tokens = 1
assert (gs_new_h * gs_new_w + num_extra_tokens) == self.model.rangevit.encoder.pos_embed.shape[1]
old_len = checkpoint_data['model']['rangevit.encoder.pos_embed'].shape[1] - num_extra_tokens # remove one for the classification token
gs_old_w = gs_new_w
gs_old_h = old_len // gs_old_w
checkpoint_data['model']['rangevit.encoder.pos_embed'] = (
resize_pos_embed(checkpoint_data['model']['rangevit.encoder.pos_embed'],
grid_old_shape=(gs_old_h, gs_old_w),
grid_new_shape=(gs_new_h, gs_new_w),
num_extra_tokens=num_extra_tokens))
assert self.model.rangevit.encoder.pos_embed.shape == checkpoint_data['model']['rangevit.encoder.pos_embed'].shape
for key in ('rangevit.kpclassifier.head.weight', 'rangevit.kpclassifier.head.bias'):
del checkpoint_data['model'][key]
checkpoint_data_model = checkpoint_data['model']
msg = self.model.load_state_dict(checkpoint_data_model, strict=(not self.settings.finetune_pretrained_model))
#print(f'msg = {msg}')
if not self.settings.finetune_pretrained_model:
print(f'==> Loading optimizer')
if self.settings.val_only is False:
self.trainer.optimizer.load_state_dict(checkpoint_data['optimizer'])
self.epoch_start = checkpoint_data['epoch'] + 1
if ('fp16_scaler' in checkpoint_data) and (checkpoint_data['fp16_scaler'] is not None):
self.trainer.fp16_scaler.load_state_dict(checkpoint_data['fp16_scaler'])
def run(self):
t_start = time.time()
if self.settings.val_only:
save_results_path = self.prediction_path if self.settings.save_eval_results else None
self.trainer.run(self.epoch_start,
mode='Validation',
print_results=True,
save_results_path=save_results_path)
cost_time = time.time() - t_start
if self.recorder is not None:
self.recorder.logger.info('==== Total cost time: {}'.format(
datetime.timedelta(seconds=cost_time)))
return
best_val_result = None
#self.trainer.scheduler.step(self.epoch_start*len(self.trainer.train_loader))
for epoch in range(self.epoch_start, self.settings.n_epochs):
# Run one epoch
self.trainer.run(epoch, mode='Train')
# Run validation
if (epoch % self.settings.val_frequency == 0 or
epoch == self.settings.n_epochs - 1 or
epoch == self.epoch_start):
val_result = self.trainer.run(epoch, mode='Validation')
# Save the best result
if self.recorder is not None:
self.recorder.logger.info(f'---- Best result after Epoch {epoch+1} ----')
if best_val_result is None:
best_val_result = val_result
for k, v in val_result.items():
if v >= best_val_result[k]:
self.recorder.logger.info(
'Get better {} model: {}'.format(k, v))
saved_path = os.path.join(
self.recorder.checkpoint_path, 'best_{}_model.pth'.format(k))
saved_path_start = os.path.join(
self.recorder.checkpoint_path, 'best_{}_model_from_start_{}.pth'.format(k, self.epoch_start))
best_val_result[k] = v
checkpoint_data = {
'model': self.model.state_dict(),
'optimizer': self.trainer.optimizer.state_dict(),
'epoch': epoch,
k: v,
}
if self.trainer.fp16_scaler is not None:
checkpoint_data['fp16_scaler'] = self.trainer.fp16_scaler.state_dict()
torch.save(checkpoint_data, saved_path)
if self.epoch_start > 0:
torch.save(checkpoint_data, saved_path_start)
# Save checkpoint
if self.recorder is not None:
saved_path = os.path.join(self.recorder.checkpoint_path, 'checkpoint.pth')
checkpoint_data = {
'model': self.model.state_dict(),
'optimizer': self.trainer.optimizer.state_dict(),
'epoch': epoch,
}
if self.trainer.fp16_scaler is not None:
checkpoint_data['fp16_scaler'] = self.trainer.fp16_scaler.state_dict()
torch.save(checkpoint_data, saved_path)
# Logging best results
if best_val_result is not None:
log_str = '>>> Best Result: '
for k, v in best_val_result.items():
log_str += '{}: {} '.format(k, v)
log_str += '\n'
self.recorder.logger.info(log_str)
# Print total cost time
cost_time = time.time() - t_start
if self.recorder is not None:
self.recorder.logger.info('=== Total cost time: {}'.format(
datetime.timedelta(seconds=cost_time)))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Experiment Options')
parser.add_argument('config_path', type=str, metavar='config_path',
help='path of config file, type: string')
parser.add_argument('--data_root', type=str, required=True,
help='path to the data, type: string')
parser.add_argument('--save_path', type=str, required=True,
help='path to save the file, type: string')
parser.add_argument('--id', type=str,
help='name to identify the run')
parser.add_argument('--num_workers', type=int, default=4,
help='number of threads used for data loading, type: int')
parser.add_argument('--pretrained_model', type=str,
help='path of pre-trained model to initialize the ViT encoder backbone, type: string')
parser.add_argument('--checkpoint', type=str,
help='path of checkpoint model for resuming training or evaluation, type: string')
parser.add_argument('--window_stride', type=int,
help='sliding window stride during validation, type: int')
parser.add_argument('--mini', action='store_true', help='use mini version of the dataset, type: bool')
parser.add_argument('--val_only', action='store_true', help='run inference only')
parser.add_argument('--test_split', action='store_true', help='run inference on the test split')
parser.add_argument('--save_eval_results', action='store_true', help='save the predictions')
parser.add_argument('--log_frequency', type=int, default=100, help='logging frequency')
parser.add_argument('--seed', type=int, default=1, help='random seed')
args = parser.parse_args()
settings = Option(args.config_path, args)
settings.id = args.id if args.id is not None else settings.id
settings.pretrained_model = args.pretrained_model if args.pretrained_model is not None else settings.pretrained_model
if args.checkpoint is not None:
settings.checkpoint = args.checkpoint
settings.pretrained_model = None
settings.finetune_pretrained_model = False
if args.val_only and args.window_stride is not None:
settings.window_stride = [settings.window_stride[0], args.window_stride]
print(f'WINDOW STRIDE: {settings.window_stride}')
settings.data_root = args.data_root
settings.use_mini_version = args.mini
settings.val_only = args.val_only
settings.test_split = args.test_split
settings.save_eval_results = args.save_eval_results
settings.log_frequency = args.log_frequency
settings.num_workers = args.num_workers
settings.seed = args.seed
# No patch and positional embeddings are loaded when training from scratch.
if settings.pretrained_model is None:
settings.reuse_patch_emb = False
settings.reuse_pos_emb = False
if settings.val_only:
settings.save_path = os.path.join(settings.save_path, f'Eval_{settings.id}')
exp = Experiment(settings)
exp.run()