-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdecbot.py
967 lines (837 loc) · 35.1 KB
/
decbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
'''
This program automates our DECam observing for DECaLS.
It takes a set of three observing plans, one for each "pass" --
good/fair/poor conditions on different tilings. As new images appear
on disk, it performs a quick-reduction to estimate the conditions and
uses that to update the exposure time of subsequent observations so
that we hit our depth goals.
We have API access to the DECam observing queue, so the bot tries to
keep some number (1 or 2) of exposures in the queue at all times. It
polls the queue, and when there is room, it submits the next planned
exposure.
'''
from __future__ import print_function
import sys
import time
import json
import datetime
import stat
import os
from collections import OrderedDict
import numpy as np
import ephem
import fitsio
from astrometry.util.fits import fits_table
from astrometry.util.starutil_numpy import ra2hmsstring as ra2hms
from astrometry.util.starutil_numpy import dec2dmsstring as dec2dms
from measure_raw import measure_raw
from obsbot import (
exposure_factor, get_tile_from_name, get_tile_id_from_name, get_airmass,
Obsbot, datenow, unixtime_to_ephem_date,
ephem_date_to_mjd, choose_pass, get_forced_pass)
def main(cmdlineargs=None, get_decbot=False):
import optparse
parser = optparse.OptionParser(usage='%prog [<pass1.json> <pass2.json> <pass3.json>]')
from camera_decam import (ephem_observer, default_extension, nominal_cal,
tile_path)
parser.add_option('--rawdata', help='Directory to monitor for new images: default $DECAM_DATA if set, else "rawdata"', default=None)
parser.add_option('--ext', help='Extension to read for computing observing conditions, default %default. Can give comma-separated list.', default=default_extension)
parser.add_option('--tiles', default=tile_path,
help='Observation status file, default %default')
parser.add_option('--pass', dest='passnum', type=int, default=None,
help="Set default pass number (1/2/3), default 2, unless it's before 15-degree twilight, in which case default is pass 3.")
parser.add_option('--exptime', type=int, default=None,
help='Set default exposure time, default whatever is in the JSON files, usually 80 sec')
parser.add_option('--start-double', default=False, action='store_true',
help='Add two copies of the first tile?')
parser.add_option('--no-adjust', dest='adjust', default=True,
action='store_false',
help='Do not adjust exposure time to compensate for previous tiles')
parser.add_option('--nqueued', type=int, default=2,
help='Set maximum number of exposures in the queue; default %default')
parser.add_option('--no-cut-past', dest='cut_before_now',
default=True, action='store_false',
help='Do not cut tiles that were supposed to be observed in the past (except upon startup)')
parser.add_option('--no-cut-past-at-startup', dest='cut_past_at_startup',
default=True, action='store_false',
help='Do not cut tiles that were supposed to be observed in the past upon startup')
parser.add_option('--prefer-new-tiles', default=False, action='store_true',
help='Allow observing new tiles that were scheduled to be observed up to N minutes ago (--new-tile-lag)')
parser.add_option('--new-tile-lag', default=15, type=int,
help='Number of minutes after their scheduled time after which new tiles will be dropped. (Old tiles get dropped 0 minutes after their scheduled times.)')
parser.add_option('--no-queue', dest='do_queue', default=True,
action='store_false',
help='Do not actually queue exposures.')
parser.add_option('--remote-server', default=None,
help='Hostname of CommandServer for queue control')
parser.add_option('--remote-port', default=None, type=int,
help='Port number of CommandServer for queue control')
parser.add_option('--threads', type=int, default=1,
help='Run multi-threaded when processing multiple extensions?')
parser.add_option('--verbose', default=False, action='store_true',
help='Turn on (even more) verbose logging')
if cmdlineargs is None:
opt,args = parser.parse_args()
else:
opt,args = parser.parse_args(cmdlineargs)
if len(args) == 0:
# Default JSON filenames
args = ['pass1.json', 'pass2.json', 'pass3.json']
if len(args) != 3:
parser.print_help()
sys.exit(-1)
obs = ephem_observer()
if opt.passnum is None:
# set default pass based on Sun altitude
obs.date = ephem.now()
if is_twilight(obs):
opt.passnum = 3
else:
opt.passnum = 2
if not (opt.passnum in [1,2,3]):
parser.print_help()
sys.exit(-1)
json1fn,json2fn,json3fn = args
J1 = json.loads(open(json1fn,'rb').read())
J2 = json.loads(open(json2fn,'rb').read())
J3 = json.loads(open(json3fn,'rb').read())
print('Read', len(J1), 'pass 1 and', len(J2), 'pass 2 and', len(J3), 'pass 3 exposures')
print('Reading tiles table', opt.tiles)
tiles = fits_table(opt.tiles)
# Annotate plans with 'planpass' field
for i,J in enumerate([J1,J2,J3]):
for j in J:
j['planpass'] = i+1
# Annotate plans with 'tilepass' field
# - build map from tileid to tile pass number
tileid_to_pass = dict([(t,p) for t,p in zip(tiles.tileid,
tiles.get('pass'))])
for J in [J1,J2,J3]:
for j in J:
tileid = get_tile_id_from_name(j['object'])
j['tileid'] = tileid
j['tilepass'] = int(tileid_to_pass[tileid])
if opt.prefer_new_tiles:
# Annotate plans with new/repeat for each tile.
# - build map from tileid to g/r/z_done
tileid_to_done = dict([
(t, dict(g=gdone, r=rdone, z=zdone)) for t,gdone,rdone,zdone
in zip(tiles.tileid, tiles.g_done, tiles.r_done, tiles.z_done)])
for i,J in enumerate([J1,J2,J3]):
nnew = 0
for j in J:
obj = j['object']
tileid = get_tile_id_from_name(obj)
# Parse objname like 'DECaLS_31759_z'
parts = str(obj).split('_')
assert(len(parts) == 3)
tileband = parts[2]
donedict = tileid_to_done[tileid]
done = donedict[tileband]
j['new_tile'] = not(done)
if not done:
nnew += 1
print('Pass', i+1, 'plan:', nnew, 'new tiles and',
(len(J)-nnew), 'repeat observations')
if opt.cut_past_at_startup:
# Drop exposures that are before *now*, in all three plans.
now = ephem.now()
print('Now:', str(now))
print('First pass 1 exposure:', ephem.Date(str(J1[0]['approx_datetime'])))
if opt.prefer_new_tiles:
new_tile_drop_time = now - opt.new_tile_lag * ephem.minute
J1 = [j for j in J1 if ephem.Date(str(j['approx_datetime'])) >
(new_tile_drop_time if j['new_tile'] else now)]
J2 = [j for j in J2 if ephem.Date(str(j['approx_datetime'])) >
(new_tile_drop_time if j['new_tile'] else now)]
J3 = [j for j in J3 if ephem.Date(str(j['approx_datetime'])) >
(new_tile_drop_time if j['new_tile'] else now)]
else:
J1 = [j for j in J1 if ephem.Date(str(j['approx_datetime'])) > now]
J2 = [j for j in J2 if ephem.Date(str(j['approx_datetime'])) > now]
J3 = [j for j in J3 if ephem.Date(str(j['approx_datetime'])) > now]
for i,J in enumerate([J1,J2,J3]):
print('Pass %i: keeping %i tiles based on time' % (i+1, len(J)))
if len(J):
print('First tile: %s' % J[0]['approx_datetime'])
if len(J1) + len(J2) + len(J3) == 0:
print('No tiles!')
return
# Tiles with ebv_med == 0 ? Look up in SFD.
I = np.flatnonzero(tiles.ebv_med == 0)
if len(I):
print('Looking up', len(I), 'tile extinctions in SFD maps')
tiles.ebv_med[I] = sfd_lookup_ebv(tiles.ra[I], tiles.dec[I])
if opt.rawdata is None:
opt.rawdata = os.environ.get('DECAM_DATA', 'rawdata')
if opt.do_queue:
kw = dict()
if opt.remote_server is not None:
kw['cs_host'] = opt.remote_server
if opt.remote_port is not None:
kw['cs_port'] = opt.remote_port
from RemoteClient import RemoteClient
print('Creating RemoteClient connection with args:', kw)
rc = RemoteClient(**kw)
else:
rc = None
# Try loading copilot's database
try:
import obsdb
from camera_decam import database_filename
obsdb.django_setup(database_filename=database_filename)
copilot_db = obsdb.MeasuredCCD.objects
except:
copilot_db = None
decbot = Decbot(J1, J2, J3, opt, nominal_cal, obs, tiles, rc,
copilot_db=copilot_db, nqueued=opt.nqueued)
if get_decbot:
return decbot
decbot.queue_initial_exposures()
decbot.run()
SFD = None
def sfd_lookup_ebv(ra, dec):
global SFD
try:
from tractor.sfd import SFDMap
if SFD is None:
SFD = SFDMap()
ebv = SFD.ebv(ra, dec)
if np.isscalar(ra) and np.isscalar(dec):
return ebv[0]
return ebv
except:
import traceback
print('Failed to look up SFD extinctions:')
traceback.print_exc()
def is_twilight(obs, twi=-15.):
'''
twi: Sun altitude, in degrees, defining 'twilight'.
'''
sun = ephem.Sun()
sun.compute(obs)
alt = np.rad2deg(float(sun.alt))
print('Current sun altitude:', alt, 'deg')
return alt > twi
class Decbot(Obsbot):
'''
How the control flow works and when stuff happens:
Startup:
- Decbot.queue_initial_exposures() -> Decbot.heartbeat()
- Obsbot.run():
while True:
sleep(5)
Obsbot.run_one()
- look for a new file, try to open it
- Decbot.process_file()
- measure image, set self.latest_measurement
- Decbot.update_plans()
Decbot.heartbeat()
- poll queue. If not empty:
- Decbot.queue_exposure()
- save in queued_tiles
- else if time after time of first exposure in any pass:
- Decbot.update_plans()
Decbot.update_plans():
- choose next pass
- for each pass:
- drop tiles before now
- drop any tiles already observed or planned
- update exposure times
- Decbot.write_plans()
Data model:
- J1, J2, J3 are the plans for passes 1,2,3 (the name "J" comes
from the JSON files these are read from). We drop exposures
from these lists using the keep_good_tiles() function.
Exposures (aka tiles in the code) can be dropped if they were
planned for before now, or if we have already queued that tile
in this run of decbot.py, or if we have seen that object name in
a file on disk, or if it has appeared previously in this pass's
plan.
- nextpass -- is which pass we currently think we should be
running. Therefore the next exposure to be queued will be
([J1,J2,J3][nextpass-1])[0]
- latest_measurement -- our most recent measurement of the
conditions. Updated when we see a new file on disk.
'''
def __init__(self, J1, J2, J3, opt, nom, obs, tiles, rc,
nqueued=2,
copilot_db=None,):
super(Decbot, self).__init__(
opt.rawdata, backlog=False, only_process_newest=True,
ignore_missing_dir=True, verbose=opt.verbose)
self.timeout = None
self.nqueued = nqueued
self.J1 = J1
self.J2 = J2
self.J3 = J3
self.opt = opt
self.nom = nom
self.obs = obs
# tiles = the decam-tiles_obstatus.fits table
self.tiles = tiles
# rc = API access to the queue -- SISPI RemoteClient
self.rc = rc
self.copilot_db = copilot_db
self.queued_tiles = []
self.adjust_previous = opt.adjust
self.nextpass = opt.passnum
self.latest_measurement = None
# first exposure only
self.queue_double = opt.start_double
# Read existing files,recording their tile names as vetoes.
self.observed_tiles = {}
# Only check files timestamped since sunset; starting up was taking
# too long since all files from a run go into one monster directory.
sun = ephem.Sun()
sunset = obs.previous_setting(sun)
fns = []
for fn in self.oldfiles:
st = os.stat(fn)
dd = unixtime_to_ephem_date(st.st_mtime)
if dd > sunset:
fns.append(fn)
print('Checking %i of %i existing files with timestamps after sunset' %
(len(fns), len(self.oldfiles)))
if copilot_db is not None:
# Further filter existing files...
try:
# Grab all copilot database entries from tonight
sunset_mjd = ephem_date_to_mjd(sunset)
ccds = copilot_db.filter(mjd_obs__gte=sunset_mjd)
ccds = ccds.values_list('filename', 'object')
# Build a map from filename (no directory path) -> obj name
dbobjs = {}
for fn,obj in ccds:
if len(obj) == 0:
continue
fn = str(fn).strip()
fn = os.path.basename(fn)
dbobjs[fn] = str(obj)
print('Checking copilot database -- found', len(dbobjs),
'from tonight')
# Go through existing files looking for database entries.
keepfns = []
for path in fns:
# check just the filename part, not the full path
fn = os.path.basename(path)
if fn in dbobjs:
obj = dbobjs[fn]
print('Found filename', fn, 'in copilot database: tile', obj)
self.observed_tiles[obj] = path
else:
keepfns.append(path)
# Check all the ones not in the db
fns = keepfns
except:
import traceback
traceback.print_exc()
self.new_observed_tiles(fns)
# Set up initial planned_tiles
self.nextpass = opt.passnum
self.update_plans(exptime=opt.exptime)
def choose_next_pass(self):
self.obs.date = ephem.now()
if is_twilight(self.obs):
# We're before or after 15-degree twilight -- only select pass 3.
return 3
M = self.latest_measurement
if M is not None:
trans = M['transparency']
seeing = M['seeing']
skybright = M['skybright']
# eg, nominal = 20, sky = 19, brighter is 1 mag brighter than nom.
nomsky = self.nom.sky(M['band'])
self.nextpass = choose_pass(trans, seeing, skybright, nomsky)
print()
print('Selected pass:', self.nextpass)
print()
return self.nextpass
def try_open_file(self, path):
ext = self.opt.ext
# multiple extensions?
exts = []
if ext is not None:
exts = ext.split(',')
F = fitsio.FITS(path)
for ext in exts:
info = F[ext].get_info()
self.debug('Checking file', path, ': ext', ext, ':', info)
def queue_initial_exposures(self):
# Queue exposures to start
for i in range(self.nqueued):
self.heartbeat()
def saw_new_files(self, fns):
# Update the veto list of tiles we have taken tonight.
self.new_observed_tiles(fns)
def new_observed_tiles(self, fns):
''' Reads the given list of files, looking for "OBJECT" keywords;
adds them to observed_tiles.'''
for fn in fns:
try:
phdr = fitsio.read_header(fn)
obj = phdr['OBJECT']
obj = str(obj).strip()
print('Old file', fn, 'observed object', obj)
self.observed_tiles[obj] = fn
except:
import traceback
print('Failed to read header of file', fn)
traceback.print_exc()
def queue_if_ready(self):
if self.rc is None:
return False
# Poll the queue to see if we can queue another one.
nq = self.rc.get_n_queued()
if nq >= self.nqueued:
self.log('%i exposures in the queue, waiting until fewer than %i.'%
(nq, self.nqueued), uniq=True)
return False
self.log('%i exposures in the queue, time to queue one.' % (nq))
e = self.queue_exposure(nq)
return (e is not None)
def heartbeat(self):
if self.queue_if_ready():
return
# Is "now" after the next tile in any pass? If so, replan!
# (but only if cut_before_now is set)
if not self.opt.cut_before_now:
return
replan = False
for J in [self.J1, self.J2, self.J3]:
if len(J):
# Is the first planned tile scheduled for before now?
jj = [J[0]]
jj = self.tiles_after_now(jj)
if len(jj) == 0:
replan = True
if replan:
self.update_plans()
def queue_exposure(self, nq):
self.choose_next_pass()
J = self.get_upcoming()
if len(J) == 0:
print('Time to queue an exposure, but none are left in the plans!')
return None
j = J.pop(0)
if self.rc is None:
print('Not actually queuing exposure (--no-queue):', j)
else:
print('Queuing exposure:', j)
expo = dict(filter=j['filter'], ra=j['RA'], dec=j['dec'],
object=j['object'], exptime=j['expTime'],
verbose=self.verbose)
# What is the total exposure time of queued exposures?
queuedtime = sum(tile['expTime'] + self.nom.overhead
for tile in self.queued_tiles[-nq:])
# What time will it be after that exposure time finishes?
t = ephem.now() + queuedtime / 86400.
# Will that be in twilight?
savedate = self.obs.date
self.obs.date = t
twi = is_twilight(self.obs)
self.obs.date = savedate
print('Now is %s, queued exposures + overheads will be %s, is that in twi? %s' %
(ephem.now(), str(ephem.date(t)), twi))
if self.queue_double:
self.rc.addexposure(**expo)
self.rc.addexposure(**expo)
self.queue_double = False
elif twi:
# Split exposure time into <= 60-second exposures
nsub = (int(expo['exptime']) + 59) // 60
tsub = (int(expo['exptime']) + (nsub-1)) // nsub
print('Split exposure time', expo['exptime'], 'into', nsub, 'x', tsub,
'sec subs')
expo['exptime'] = tsub
for i in range(nsub):
self.rc.addexposure(**expo)
j['expTime'] = tsub
for i in range(nsub-1):
self.queued_tiles.append(j)
else:
self.rc.addexposure(**expo)
self.queued_tiles.append(j)
return j
def filter_new_files(self, fns):
return [fn for fn in fns if
fn.endswith('.fits.fz') or fn.endswith('.fits')]
def check_header(self, fn):
# Read primary FITS header
phdr = fitsio.read_header(fn)
obstype = phdr.get('OBSTYPE','').strip()
#print('Obstype:', obstype)
if obstype in ['zero', 'focus', 'dome flat']:
print('Skipping obstype =', obstype)
return False
elif obstype == '':
print('Empty OBSTYPE in header:', fn)
return False
exptime = phdr.get('EXPTIME')
if exptime == 0:
print('Exposure time EXPTIME in header =', exptime)
return False
filt = str(phdr['FILTER'])
filt = filt.strip()
filt = filt.split()[0]
## DECam?
if filt == 'solid':
print('Solid (block) filter.')
return False
obj = phdr.get('OBJECT', '')
print('Object:', obj, 'exptime', exptime, 'filter', filt)
return True
def measure_extensions(self, fn, ext, kwa):
# If we're checking multiple extensions, build argument lists for each.
args = []
if ext is not None:
exts = ext.split(',')
for ext in exts:
thiskwa = kwa.copy()
thiskwa.update(ext=ext)
args.append((fn, thiskwa))
else:
args.append((fn, kwa))
# Measure extensions in parallel.
from astrometry.util.multiproc import multiproc
mp = multiproc(self.opt.threads)
MM = mp.map(bounce_measure_raw, args)
mp.close()
del mp
return MM
def check_measurements(self, MM, fn):
# Reasonableness checks
keep = []
for M in MM:
ok = (M is not None) and (M.get('nmatched',0) >= 20) and (M.get('zp',None) is not None)
if ok:
keep.append(M)
if len(keep) == 0:
print('Failed checks in our measurement of', fn,
'-- not updating anything')
# FIXME -- we could fall back to pass 3 here.
return []
return keep
def average_measurements(self, MM):
# Average the measurements -- but start by copying one of
# the measurements.
M = MM[0].copy()
# FIXME -- means?
for key,nice in [('skybright','Sky'),
('transparency','Transparency'),
('seeing','Seeing')]:
print('Measurements of %-12s:' % nice,
', '.join(['%6.3f' % mi[key] for mi in MM]))
M[key] = np.mean([mi[key] for mi in MM])
return M
def process_file(self, fn):
ok = self.check_header(fn)
if not ok:
return False
# Measure the new image
kwa = dict(verbose=self.verbose, ps=None)
MM = self.measure_extensions(fn, self.opt.ext, kwa)
MM = self.check_measurements(MM, fn)
if len(MM) == 0:
return False
if len(MM) == 1:
M = MM[0]
else:
M = self.average_measurements(MM)
trans = M['transparency']
seeing = M['seeing']
skybright = M['skybright']
# eg, nominal = 20, sky = 19, brighter is 1 mag brighter than nom.
band = M['band']
nomsky = self.nom.sky(band)
brighter = nomsky - skybright
print('Transparency: %6.02f' % trans)
print('Seeing : %6.02f' % seeing)
print('Sky : %6.02f' % skybright)
print('Nominal sky : %6.02f' % nomsky)
print('Sky over nom: %6.02f (positive means brighter than nom)' %
brighter)
# Just FYI
try:
fid = self.nom.fiducial_exptime(band)
airmass = M['airmass']
ebv = sfd_lookup_ebv(M['ra_ccd'], M['dec_ccd'])
print('E(B-V) : %6.02f' % ebv)
expfactor = exposure_factor(fid, self.nom, airmass, ebv, seeing,
skybright, trans)
print('Exposure factor: %6.02f' % expfactor)
except:
pass
if self.copilot_db is not None and (M['band'] in ['g','r']):
self.recent_gr(M)
self.latest_measurement = M
self.update_plans()
def recent_gr(self, M):
'''
Add to the given measurement dictionary *M* estimates of
g and r sky and seeing based on the recent past.
Updates *M* in-place.
'''
from copilot import recent_gr_sky_color, recent_gr_seeing
gr, ndiff, ng, nr = recent_gr_sky_color()
if gr is not None:
M['grsky'] = gr
gr = recent_gr_seeing()
if gr is not None:
M['grsee'] = gr
def get_upcoming(self):
return [self.J1,self.J2,self.J3][self.nextpass-1]
def update_plans(self, exptime=None):
# Sets self.nextpass
self.choose_next_pass()
self.J1 = self.keep_good_tiles(self.J1)
self.J2 = self.keep_good_tiles(self.J2)
self.J3 = self.keep_good_tiles(self.J3)
# Update plans (exposure times) for all three passes
for j,J in enumerate([self.J1, self.J2, self.J3]):
passnum = j+1
self.update_plans_for_pass(passnum, J, exptime)
self.write_plans()
def update_plans_for_pass(self, passnum, J, exptime):
if len(J) == 0:
print('Could not find a JSON observation in pass', passnum,
'with approx_datetime after now =', str(ephem.now()))
return
M = self.latest_measurement
if M is not None:
# Update the exposure times in plan J based on measured conditions.
print(' Updating exposure times for pass', passnum)
# Keep track of expected time of observations
# FIXME -- should add margin for the images currently in the queue.
self.obs.date = ephem.now()
for ii,jplan in enumerate(J):
exptime = self.exptime_for_tile(jplan)
jplan['expTime'] = exptime
self.obs.date += (exptime + self.nom.overhead) / 86400.
elif exptime is not None:
for ii,jplan in enumerate(J):
jplan['expTime'] = exptime
self.obs.date = ephem.now()
for ii,jplan in enumerate(J):
#print('jplan:', jplan)
s = (('%s (pass %i), band %s, RA,Dec (%.3f,%.3f), ' +
'exptime %i.') %
(jplan['object'], jplan['tilepass'], jplan['filter'],
jplan['RA'], jplan['dec'], jplan['expTime']))
if ii < 3:
airmass = self.airmass_for_tile(jplan)
s += ' Airmass if observed now: %.2f' % airmass
print(' ', s)
else:
self.debug(' ', s)
def airmass_for_tile(self, jplan):
'''
Note, uses self.obs
'''
rastr = ra2hms (jplan['RA' ])
decstr = dec2dms(jplan['dec'])
ephemstr = str('%s,f,%s,%s,20' % ('X', rastr, decstr))
etile = ephem.readdb(ephemstr)
etile.compute(self.obs)
airmass = get_airmass(float(etile.alt))
return airmass
def exptime_for_tile(self, jplan):
'''
Note, uses self.obs(.date) to compute airmass.
'''
tilename = str(jplan['object'])
# Find this tile in the tiles table.
tile = get_tile_from_name(tilename, self.tiles)
ebv = tile.ebv_med
band = str(jplan['filter'])[0]
airmass = self.airmass_for_tile(jplan)
M = self.latest_measurement
trans = M['transparency']
seeing = M['seeing']
msky = M['skybright']
grsky = M.get('grsky', None)
grsee = M.get('grsee', None)
mband = M['band']
mairmass = M['airmass']
assert(mairmass >= 1.0 and mairmass < 4.0)
sky = self.predict_sky(mband, msky, band, grsky)
seeing = self.predict_seeing(band, seeing, mairmass, airmass, grsee)
fid = self.nom.fiducial_exptime(band)
expfactor = exposure_factor(fid, self.nom, airmass,ebv,seeing,sky,trans)
if self.adjust_previous:
adjfactor = self.adjust_for_previous(tile, band, fid)
# Don't adjust exposure times down, only up.
adjfactor = max(adjfactor, 1.0)
expfactor *= adjfactor
exptime = expfactor * fid.exptime
### HACK -- safety factor!
exptime *= 1.1
exptime = int(np.ceil(exptime))
exptime = np.clip(exptime, fid.exptime_min, fid.exptime_max)
if band == 'z':
# Compute cap on exposure time to avoid saturation /
# loss of dynamic range.
t_sat = self.nom.saturation_time(band, sky)
if exptime > t_sat:
exptime = t_sat
# Don't print this a gajillion times
self.log('Reduced exposure time to avoid z-band ' +
'saturation: %.1f s' % exptime, uniq=True)
exptime = int(exptime)
return exptime
def predict_sky(self, mband, msky, band, grsky):
'''
mband: measured band
msky: measured sky in that band
band: band that we want to predict the sky level in
grsky: estimate of g-r sky color.
'''
if mband == band:
sky = msky
else:
sky = None
if ((grsky is not None) and
((mband == 'g' and band == 'r') or
(mband == 'r' and band == 'g'))):
self.debug('g-r color:', grsky, '; measured sky in', mband,
'=', msky)
if band == 'r':
sky = msky - grsky
else:
sky = msky + grsky
self.debug('predicted sky in', band, '=', sky)
if sky is None:
# Guess that the sky is as much brighter than canonical
# in the next band as it is in this one!
nomsky = self.nom.sky(mband)
sky = ((msky - nomsky) + self.nom.sky(band))
return sky
def predict_seeing(self, band, seeing, mairmass, airmass, grsee):
'''
band: band we want to predict the seeing in.
seeing: measured seeing
mairmass: airmass of measured images
airmass: airmass of the image we want to predict for.
grsee: recent seeing estimates for g,r bands.
'''
oldsee = seeing
if (grsee is not None) and (band in 'gr'):
g_see,r_see,G,R = grsee
oldair = mairmass
if band == 'r':
seeing = r_see
mairmass = np.median(R.airmass)
else:
seeing = g_see
mairmass = np.median(G.airmass)
self.debug('Using g,r seeing estimate', seeing, 'rather than ',
'most recent measurement', oldsee)
self.debug('Updating airmass from', oldair, 'to', mairmass,
'used for seeing estimate')
seeing_wrt_airmass = self.nom.seeing_wrt_airmass(band)
seeing += (airmass - mairmass) * seeing_wrt_airmass
self.debug('Updated seeing prediction from', oldsee, 'to', seeing,
'for airmass %.2f to %.2f' % (mairmass, airmass))
return seeing
def tiles_after_now(self, J):
now = ephem.now()
keep = []
for i,j in enumerate(J):
tstart = ephem.Date(str(j['approx_datetime']))
if tstart > now:
#print('Found tile %s which starts at %s' %
# (j['object'], str(tstart)))
keep.append(j)
return keep
def write_plans(self):
# Write upcoming plan to a JSON file
fn = 'decbot-plan.json'
tmpfn = fn + '.tmp'
upcoming = self.get_upcoming()
jstr = json.dumps(upcoming, sort_keys=True,
indent=4, separators=(',', ': '))
f = open(tmpfn, 'w')
f.write(jstr + '\n')
f.close()
os.rename(tmpfn, fn)
self.debug('Wrote', fn)
fn = 'decbot-plan-5.json'
tmpfn = fn + '.tmp'
jstr = json.dumps(upcoming[:5], sort_keys=True,
indent=4, separators=(',', ': '))
f = open(tmpfn, 'w')
f.write(jstr + '\n')
f.close()
os.rename(tmpfn, fn)
self.debug('Wrote', fn)
# Write a FITS table of the exposures we think we've queued,
# the ones we have planned, and the future tiles in passes 1,2,3.
J,types = [],[]
for t,j in [
('Q', self.queued_tiles),
('P', upcoming),
('1', self.J1),
('2', self.J2),
('3', self.J3),]:
J.extend(j)
types.extend(t * len(j))
T = fits_table()
T.type = np.array(types)
T.tilename = np.array([str(j['object']) for j in J])
T.filter = np.array([str(j['filter'])[0] for j in J])
T.exptime = np.array([ j['expTime'] for j in J])
T.planpass = np.array([ j['planpass'] for j in J])
T.ra = np.array([ j['RA'] for j in J])
T.dec = np.array([ j['dec'] for j in J])
fn = 'decbot-plan.fits'
tmpfn = fn + '.tmp'
T.writeto(tmpfn)
os.rename(tmpfn, fn)
self.debug('Wrote', fn)
def keep_good_tiles(self, J):
keep = []
now = ephem.now()
if self.opt.prefer_new_tiles:
# opt.new_tile_lag in minutes
new_tile_drop_time = now - self.opt.new_tile_lag * ephem.minute
for j in J:
if self.opt.cut_before_now:
tstart = ephem.Date(str(j['approx_datetime']))
droptime = now
if self.opt.prefer_new_tiles:
if j['new_tile']:
droptime = new_tile_drop_time
if tstart < droptime:
print('Dropping tile with approx_datetime', j['approx_datetime'], ' -- now is', now, 'and drop time is', droptime)
continue
tilename = str(j['object'])
# Was this tile seen in a file on disk? (not incl. backlog)
if tilename in self.observed_tiles:
print('skipping tile with name', tilename, 'because it is in the observed tile on disk')
continue
if object_name_in_list(j, self.queued_tiles):
print('skipping tile with name', tilename, 'because it is in the list of queued tiles')
continue
# Our plan files should already have this property..!
if object_name_in_list(j, keep):
print('skipping tile with name', tilename, 'already seen in this plan')
continue
keep.append(j)
return keep
def object_name_in_list(j, Jlist):
tilename = str(j['object'])
for tile in Jlist:
if str(tile['object']) == tilename:
return True
return False
def bounce_measure_raw(args):
(fn, kwargs) = args
try:
return measure_raw(fn, **kwargs)
except:
print('Failed to measure image:', fn, kwargs)
import traceback
traceback.print_exc()
return None
if __name__ == '__main__':
main()