-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
move properties of ForInStep to separate file
- Loading branch information
Showing
1 changed file
with
244 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
import SciLean.Core.Monads.FwdDerivMonad | ||
import SciLean.Core.Monads.Id | ||
import SciLean.Data.DataArray | ||
|
||
set_option linter.unusedVariables false | ||
|
||
open SciLean | ||
variable | ||
{K : Type _} [IsROrC K] | ||
|
||
-- This is not true but lets assume it for now | ||
instance [Vec K X] : Vec K (ForInStep X) := sorry | ||
|
||
-- This is not true but lets assume it for now | ||
instance [SemiInnerProductSpace K X] : SemiInnerProductSpace K (ForInStep X) := sorry | ||
|
||
|
||
def ForInStep.val : ForInStep α → α | ||
| .yield a => a | ||
| .done a => a | ||
|
||
|
||
@[simp, ftrans_simp] | ||
theorem ForInStep.val_yield (a : α) : ForInStep.val (.yield a) = a := by rfl | ||
|
||
@[simp, ftrans_simp] | ||
theorem ForInStep.val_done (a : α) : ForInStep.val (.done a) = a := by rfl | ||
|
||
|
||
/-- Turns a pair of values each with yield/done annotation into a pair with | ||
a single yield/done annotation based on the first element. -/ | ||
def ForInStep.return2 (x : ForInStep α × ForInStep β) : ForInStep (α × β) := | ||
match x.1, x.2 with | ||
| .yield x₁, .yield x₂ => .yield (x₁, x₂) | ||
| .yield x₁, .done x₂ => .yield (x₁, x₂) | ||
| .done x₁, .yield x₂ => .done (x₁, x₂) | ||
| .done x₁, .done x₂ => .done (x₁, x₂) | ||
|
||
def ForInStep.return2Inv (x : ForInStep (α × β)) : ForInStep α × ForInStep β := | ||
match x with | ||
| .yield (x,y) => (.yield x, .yield y) | ||
| .done (x,y) => (.done x, .done y) | ||
|
||
|
||
@[simp] | ||
theorem ForInStep.return2_return2Inv_yield {α β} (x : α × β) | ||
: ForInStep.return2 (ForInStep.return2Inv (.yield x)) = .yield x := by rfl | ||
|
||
@[simp] | ||
theorem ForInStep.return2_return2Inv_done {α β} (x : α × β) | ||
: ForInStep.return2 (ForInStep.return2Inv (.done x)) = .done x := by rfl | ||
|
||
|
||
|
||
section OnVec | ||
|
||
variable | ||
{K : Type _} [IsROrC K] | ||
{X : Type _} [Vec K X] | ||
{Y : Type _} [Vec K Y] | ||
{Z : Type _} [Vec K Z] | ||
|
||
|
||
-- ForInStep.yield ------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop] | ||
theorem ForInStep.yield.arg_a0.IsDifferentiable_rule | ||
(a0 : X → Y) (ha0 : IsDifferentiable K a0) | ||
: IsDifferentiable K fun x => ForInStep.yield (a0 x) := by sorry_proof | ||
|
||
-- this is a hack as with Id monad sometimes you do not need `pure` which trips `fprop` up | ||
@[fprop] | ||
theorem ForInStep.yield.arg_a0.IsDifferentiableM_rule | ||
(a0 : X → Y) (ha0 : IsDifferentiable K a0) | ||
: IsDifferentiableM (m:=Id) K fun x => ForInStep.yield (a0 x) := by sorry_proof | ||
|
||
@[ftrans] | ||
theorem ForInStep.yield.arg_a0.cderiv_rule | ||
(a0 : X → Y) (ha0 : IsDifferentiable K a0) | ||
: cderiv K (fun x => ForInStep.yield (a0 x)) | ||
= | ||
fun x dx => ForInStep.yield (cderiv K a0 x dx) := by sorry_proof | ||
|
||
@[ftrans] | ||
theorem ForInStep.yield.arg_a0.fwdCDeriv_rule | ||
(a0 : X → Y) (ha0 : IsDifferentiable K a0) | ||
: fwdCDeriv K (fun x => ForInStep.yield (a0 x)) | ||
= | ||
fun x dx => ForInStep.return2Inv (ForInStep.yield (fwdCDeriv K a0 x dx)) | ||
:= by sorry_proof | ||
|
||
@[fprop] | ||
theorem ForInStep.done.arg_a0.IsDifferentiable_rule | ||
(a0 : X → Y) (ha0 : IsDifferentiable K a0) | ||
: IsDifferentiable K fun x => ForInStep.done (a0 x) := by sorry_proof | ||
|
||
|
||
-------------------------------------------------------------------------------- | ||
-- ForInStep.done ------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
-- this is a hack as with Id monad sometimes you do not need `pure` which trips `fprop` up | ||
@[fprop] | ||
theorem ForInStep.done.arg_a0.IsDifferentiableM_rule | ||
(a0 : X → Y) (ha0 : IsDifferentiable K a0) | ||
: IsDifferentiableM (m:=Id) K fun x => ForInStep.done (a0 x) := by sorry_proof | ||
|
||
@[ftrans] | ||
theorem ForInStep.done.arg_a0.cderiv_rule | ||
(a0 : X → Y) (ha0 : IsDifferentiable K a0) | ||
: cderiv K (fun x => ForInStep.done (a0 x)) | ||
= | ||
fun x dx => ForInStep.done (cderiv K a0 x dx) := by sorry_proof | ||
|
||
@[ftrans] | ||
theorem ForInStep.done.arg_a0.fwdCDeriv_rule | ||
(a0 : X → Y) (ha0 : IsDifferentiable K a0) | ||
: fwdCDeriv K (fun x => ForInStep.done (a0 x)) | ||
= | ||
fun x dx => ForInStep.return2Inv (ForInStep.done (fwdCDeriv K a0 x dx)) | ||
:= by sorry_proof | ||
|
||
end OnVec | ||
|
||
|
||
-------------------------------------------------------------------------------- | ||
|
||
section OnSemiInnerProductSpace | ||
|
||
variable | ||
{K : Type _} [IsROrC K] | ||
{X : Type _} [SemiInnerProductSpace K X] | ||
{Y : Type _} [SemiInnerProductSpace K Y] | ||
{Z : Type _} [SemiInnerProductSpace K Z] | ||
{W : Type _} [SemiInnerProductSpace K W] | ||
|
||
|
||
-------------------------------------------------------------------------------- | ||
-- ForInStep.yield ------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop] | ||
theorem ForInStep.yield.arg_a0.HasAdjDiff_rule | ||
(a0 : X → Y) (ha0 : HasAdjDiff K a0) | ||
: HasAdjDiff K fun x => ForInStep.yield (a0 x) := by sorry_proof | ||
|
||
@[fprop] | ||
theorem ForInStep.yield.arg_a0.HasAdjDiffM_rule | ||
(a0 : X → Y) (ha0 : HasAdjDiff K a0) | ||
: HasAdjDiffM (m:=Id) K fun x => ForInStep.yield (a0 x) := by sorry_proof | ||
|
||
@[ftrans] | ||
theorem ForInStep.yield.arg_a0.revCDeriv_rule | ||
(a0 : X → Y) (ha0 : HasAdjDiff K a0) | ||
: revCDeriv K (fun x => ForInStep.yield (a0 x)) | ||
= | ||
fun x => | ||
let ydf := revCDeriv K a0 x | ||
(.yield ydf.1, fun y => ydf.2 y.val) | ||
:= by sorry_proof | ||
|
||
@[ftrans] | ||
theorem ForInStep.yield.arg_a0.revDerivM_rule | ||
(a0 : X → Y) (ha0 : HasAdjDiff K a0) | ||
: revDerivM (m:=Id) K (fun x => ForInStep.yield (a0 x)) | ||
= | ||
fun x => | ||
let ydf := revCDeriv K a0 x | ||
(.yield ydf.1, fun y => ydf.2 y.val) | ||
:= by sorry_proof | ||
|
||
|
||
-------------------------------------------------------------------------------- | ||
-- ForInStep.done -------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop] | ||
theorem ForInStep.done.arg_a0.HasAdjDiff_rule | ||
(a0 : X → Y) (ha0 : HasAdjDiff K a0) | ||
: HasAdjDiff K fun x => ForInStep.done (a0 x) := by sorry_proof | ||
|
||
@[fprop] | ||
theorem ForInStep.done.arg_a0.HasAdjDiffM_rule | ||
(a0 : X → Y) (ha0 : HasAdjDiff K a0) | ||
: HasAdjDiffM (m:=Id) K fun x => ForInStep.done (a0 x) := by sorry_proof | ||
|
||
@[ftrans] | ||
theorem ForInStep.done.arg_a0.revCDeriv_rule | ||
(a0 : X → Y) (ha0 : HasAdjDiff K a0) | ||
: revCDeriv K (fun x => ForInStep.done (a0 x)) | ||
= | ||
fun x => | ||
let ydf := revCDeriv K a0 x | ||
(.done ydf.1, fun y => ydf.2 y.val) | ||
:= by sorry_proof | ||
|
||
@[ftrans] | ||
theorem ForInStep.done.arg_a0.revDerivM_rule | ||
(a0 : X → Y) (ha0 : HasAdjDiff K a0) | ||
: revDerivM (m:=Id) K (fun x => ForInStep.done (a0 x)) | ||
= | ||
fun x => | ||
let ydf := revCDeriv K a0 x | ||
(.done ydf.1, fun y => ydf.2 y.val) | ||
:= by sorry_proof | ||
|
||
|
||
-------------------------------------------------------------------------------- | ||
-- ForInStep.val -------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop] | ||
theorem ForInStep.val.arg_a0.HasAdjDiff_rule | ||
(a0 : X → ForInStep Y) (ha0 : HasAdjDiff K a0) | ||
: HasAdjDiff K fun x => ForInStep.val (a0 x) := by sorry_proof | ||
|
||
@[fprop] | ||
theorem ForInStep.val.arg_a0.HasAdjDiffM_rule | ||
(a0 : X → ForInStep Y) (ha0 : HasAdjDiff K a0) | ||
: HasAdjDiffM (m:=Id) K fun x => ForInStep.val (a0 x) := by sorry_proof | ||
|
||
@[ftrans] | ||
theorem ForInStep.val.arg_a0.revCDeriv_rule | ||
(a0 : X → ForInStep Y) (ha0 : HasAdjDiff K a0) | ||
: revCDeriv K (fun x => ForInStep.val (a0 x)) | ||
= | ||
fun x => | ||
let ydf := revCDeriv K a0 x | ||
(ydf.1.val, fun y => ydf.2 (.yield y)) | ||
:= by sorry_proof | ||
|
||
@[ftrans] | ||
theorem ForInStep.val.arg_a0.revDerivM_rule | ||
(a0 : X → ForInStep Y) (ha0 : HasAdjDiff K a0) | ||
: revDerivM (m:=Id) K (fun x => ForInStep.val (a0 x)) | ||
= | ||
fun x => | ||
let ydf := revCDeriv K a0 x | ||
(ydf.1.val, fun y => ydf.2 (.yield y)) | ||
:= by sorry_proof | ||
|
||
|
||
end OnSemiInnerProductSpace |