-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
new ftrans
revDerivProj
and revDerivProjUpdate
- Loading branch information
Showing
2 changed files
with
177 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
import SciLean.Core.FunctionTransformations.RevCDeriv | ||
import SciLean.Core.FunctionTransformations.RevDerivUpdate | ||
import SciLean.Data.TypeWithProj | ||
|
||
set_option linter.unusedVariables false | ||
|
||
namespace SciLean | ||
|
||
variable | ||
(K : Type _) [IsROrC K] | ||
{X : Type _} [SemiInnerProductSpace K X] | ||
{Y : Type _} [SemiInnerProductSpace K Y] | ||
{Z : Type _} [SemiInnerProductSpace K Z] | ||
{W : Type _} [SemiInnerProductSpace K W] | ||
{ι : Type _} [EnumType ι] | ||
|
||
{E : Type _} [SemiInnerProductSpace K E] | ||
{EIdx : Type _} | ||
{EVal : EIdx → Type _} [∀ i, SemiInnerProductSpace K (EVal i)] | ||
[TypeWithProj E EIdx EVal] | ||
{F : Type _} [SemiInnerProductSpace K F] | ||
{FIdx : Type _} | ||
{FVal : FIdx → Type _} [∀ i, SemiInnerProductSpace K (FVal i)] | ||
[TypeWithProj F FIdx FVal] | ||
|
||
instance (i : EIdx ⊕ FIdx) : Vec K (Prod.TypeFun EVal FVal i) := | ||
match i with | ||
| .inl _ => by infer_instance | ||
| .inr _ => by infer_instance | ||
|
||
instance (i : EIdx ⊕ FIdx) : SemiInnerProductSpace K (Prod.TypeFun EVal FVal i) := | ||
match i with | ||
| .inl _ => by infer_instance | ||
| .inr _ => by infer_instance | ||
|
||
noncomputable | ||
def revDerivProj | ||
(f : X → E) (x : X) : E×((i : EIdx)→EVal i→X) := | ||
(f x, fun i de => | ||
have := Classical.propDecidable | ||
(revCDeriv K f x).2 (TypeWithProj.intro fun i' => if h:i=i' then h▸de else 0)) | ||
|
||
noncomputable | ||
def revDerivProjUpdate | ||
(f : X → E) (x : X) : E×((i : EIdx)→EVal i→K→X→X) := | ||
(f x, fun i de k dx => | ||
have := Classical.propDecidable | ||
(revDerivUpdate K f x).2 (TypeWithProj.intro fun i' => if h:i=i' then h▸de else 0) k x) | ||
|
||
|
||
-------------------------------------------------------------------------------- | ||
|
||
|
||
theorem revDerivProj.id_rule | ||
: revDerivProj K (fun x : E => x) | ||
= | ||
fun x => | ||
(x, | ||
fun i de => | ||
have := Classical.propDecidable | ||
TypeWithProj.intro fun i' => if h : i=i' then h▸de else 0):= | ||
by | ||
simp[revDerivProj] | ||
ftrans | ||
|
||
theorem revDerivProjUpdate.id_rule | ||
: revDerivProjUpdate K (fun x : E => x) | ||
= | ||
fun x => | ||
(x, | ||
fun i de k dx => | ||
TypeWithProj.modify i (fun ei => ei + k•de) dx) := | ||
by | ||
simp[revDerivProjUpdate] | ||
ftrans | ||
sorry_proof | ||
|
||
|
||
theorem revDerivProj.comp_rule | ||
(f : Y → E) (g : X → Y) | ||
: revDerivProj K (fun x => f (g x)) | ||
= | ||
fun x => | ||
let ydg' := revCDeriv K g x | ||
let zdf' := revDerivProj K f ydg'.1 | ||
(zdf'.1, | ||
fun i de => | ||
ydg'.2 (zdf'.2 i de)) := | ||
by | ||
sorry_proof | ||
|
||
theorem revDerivProjUpdate.comp_rule | ||
(f : Y → E) (g : X → Y) | ||
: revDerivProjUpdate K (fun x => f (g x)) | ||
= | ||
fun x => | ||
let ydg' := revDerivUpdate K g x | ||
let zdf' := revDerivProj K f ydg'.1 | ||
(zdf'.1, | ||
fun i de k dx => | ||
ydg'.2 (zdf'.2 i de) k dx) := | ||
by | ||
sorry_proof | ||
|
||
|
||
|
||
theorem Prod.fst.arg_self.revDeriv_rule | ||
(f : W → X×Y) (hf : HasAdjDiff K f) | ||
: revCDeriv K (fun w => (f w).1) | ||
= | ||
fun w => | ||
let xydf' := revDerivProj K f w | ||
(xydf'.1.1, fun dx => xydf'.2 (.inl ()) dx) := | ||
by | ||
sorry_proof | ||
|
||
|
||
theorem Prod.fst.arg_self.revDerivProj_rule | ||
{XIdx : Type _} | ||
{XVal : XIdx → Type _} [∀ i, SemiInnerProductSpace K (XVal i)] | ||
[TypeWithProj X XIdx XVal] | ||
(f : W → X×Y) (hf : HasAdjDiff K f) | ||
: revDerivProj K (fun w => (f w).1) | ||
= | ||
fun w => | ||
let xydf' := revDerivProj K f w | ||
(xydf'.1.1, | ||
fun i dx => xydf'.2 (.inl i) dx) := | ||
by | ||
sorry_proof |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
import Mathlib.Init.Function | ||
import SciLean.Util.SorryProof | ||
|
||
namespace SciLean | ||
|
||
open Function | ||
|
||
class TypeWithProj (F : Sort _) (I : outParam (Sort _)) (E : outParam <| I → Sort _) where | ||
proj : F → (i : I) → (E i) | ||
intro : ((i : I) → (E i)) → F | ||
modify : (i : I) → (E i → E i) → (F → F) | ||
left_inv : LeftInverse proj intro | ||
right_inv : RightInverse proj intro | ||
-- TODO: theorem about modify | ||
|
||
|
||
|
||
-------------------------------------------------------------------------------- | ||
-- Prod ------------------------------------------------------------------------ | ||
-------------------------------------------------------------------------------- | ||
|
||
abbrev _root_.Prod.TypeFun {αIdx βIdx : Type _} (αType : αIdx → Type _) (βType : βIdx → Type _) (i : Sum αIdx βIdx) : Type _ := | ||
match i with | ||
| .inl a => αType a | ||
| .inr b => βType b | ||
|
||
instance (priority:=low) : TypeWithProj α Unit (fun _ => α) where | ||
proj := fun x _ => x | ||
intro := fun f => f () | ||
modify := fun _ f x => f x | ||
left_inv := sorry_proof | ||
right_inv := sorry_proof | ||
|
||
instance [TypeWithProj α αIdx αType] [TypeWithProj β βIdx βType] | ||
: TypeWithProj (α×β) (Sum αIdx βIdx) (Prod.TypeFun αType βType) where | ||
proj := fun (x,y) i => | ||
match i with | ||
| .inl a => TypeWithProj.proj x a | ||
| .inr b => TypeWithProj.proj y b | ||
intro := fun f => (TypeWithProj.intro (fun a => f (.inl a)), | ||
TypeWithProj.intro (fun b => f (.inr b))) | ||
modify := fun i f (x,y) => | ||
match i with | ||
| .inl a => (TypeWithProj.modify a f x, y) | ||
| .inr b => (x, TypeWithProj.modify b f y) | ||
left_inv := sorry_proof | ||
right_inv := sorry_proof |