-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
252 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,252 @@ | ||
import Mathlib.Algebra.Field.Defs | ||
import Mathlib.GroupTheory.GroupAction.Defs | ||
|
||
import SciLean.Tactic.FProp.Basic | ||
import SciLean.Tactic.FProp.Notation | ||
|
||
set_option linter.unusedVariables false | ||
|
||
-- Basic rules ----------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
open Function | ||
|
||
namespace Function.Bijective | ||
|
||
variable | ||
{X : Type _} [Nonempty X] | ||
{Y : Type _} [Nonempty Y] | ||
{Z : Type _} [Nonempty Z] | ||
|
||
|
||
theorem id_rule | ||
: Bijective (fun x : X => x) | ||
:= bijective_id | ||
|
||
|
||
theorem comp_rule | ||
(f : Y → Z) (g : X → Y) | ||
(hf : Bijective f) (hg : Bijective g) | ||
: Bijective (fun x => f (g x)) | ||
:= Bijective.comp hf hg | ||
|
||
|
||
-------------------------------------------------------------------------------- | ||
-- Register Bijective ---------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
open Lean Meta SciLean FProp | ||
def Bijective.fpropExt : FPropExt where | ||
fpropName := ``Bijective | ||
getFPropFun? e := | ||
if e.isAppOf ``Bijective then | ||
if let .some f := e.getArg? 2 then | ||
some f | ||
else | ||
none | ||
else | ||
none | ||
|
||
replaceFPropFun e f := | ||
if e.isAppOf ``Bijective then | ||
e.modifyArg (fun _ => f) 2 | ||
else | ||
e | ||
|
||
identityRule e := | ||
let thm : SimpTheorem := | ||
{ | ||
proof := mkConst ``id_rule | ||
origin := .decl ``id_rule | ||
rfl := false | ||
} | ||
FProp.tryTheorem? e thm (fun _ => pure none) | ||
|
||
constantRule _ := return none | ||
|
||
compRule e f g := do | ||
let thm : SimpTheorem := | ||
{ | ||
proof := ← mkAppM ``comp_rule #[f,g] | ||
origin := .decl ``comp_rule | ||
rfl := false | ||
} | ||
FProp.tryTheorem? e thm (fun _ => pure none) | ||
|
||
lambdaLetRule _ _ _ := return none | ||
lambdaLambdaRule _ _ := return none | ||
projRule _ := return none | ||
|
||
discharger _ := return none | ||
|
||
-- register fderiv | ||
#eval show Lean.CoreM Unit from do | ||
modifyEnv (λ env => FProp.fpropExt.addEntry env (``Bijective, Bijective.fpropExt)) | ||
|
||
|
||
end Function.Bijective | ||
|
||
|
||
variable | ||
{X : Type _} [Nonempty X] | ||
{X₁ : Type _} [Nonempty X₁] | ||
{X₂ : Type _} [Nonempty X₂] | ||
{Y : Type _} [Nonempty Y] | ||
{Z : Type _} [Nonempty Z] | ||
|
||
|
||
-- Prod ------------------------------------------------------------------------ | ||
-------------------------------------------------------------------------------- | ||
|
||
-- Prod.mk -------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop] | ||
theorem Prod.mk.arg_fstsnd.Bijective_rule | ||
(f : X₁ → Y) (g : X₂ → Z) | ||
(hf : Bijective f) (hg : Bijective g) | ||
: Bijective fun x : X₁×X₂ => (f x.1, g x.2) | ||
:= by sorry_proof | ||
|
||
|
||
-- Id -------------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop] | ||
theorem id.arg_a.Bijective_rule | ||
: Bijective (id : X → X) := by unfold id; fprop | ||
|
||
|
||
-- Function.comp --------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop] | ||
theorem Function.comp.arg_a0.Bijective_rule | ||
(f : Y → Z) (hf : Bijective f) | ||
(g : X → Y) (hg : Bijective g) | ||
: Bijective (f ∘ g) | ||
:= Bijective.comp hf hg | ||
|
||
|
||
|
||
-- Neg.neg --------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop] | ||
theorem Neg.neg.arg_a0.Bijective_rule | ||
[AddGroup Y] | ||
(f : X → Y) (hf : Bijective f) | ||
: Bijective fun x => - f x | ||
:= by sorry_proof | ||
|
||
|
||
-- Inv.inv --------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop] | ||
theorem Inv.inv.arg_a0.Bijective_rule_group | ||
[Group Y] | ||
(f : X → Y) (hf : Bijective f) | ||
: Bijective fun x => (f x)⁻¹ | ||
:= by sorry_proof | ||
|
||
|
||
@[fprop] | ||
theorem Inv.inv.arg_a0.Bijective_rule_field | ||
[Field Y] | ||
(f : X → Y) (hf : Bijective f) (hf' : ∀ x, f x ≠ 0) | ||
: Bijective fun x => (f x)⁻¹ | ||
:= by sorry_proof | ||
|
||
|
||
-- HAdd.hAdd ------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop] | ||
theorem HAdd.hAdd.arg_a0.Bijective_rule | ||
[AddGroup Y] | ||
(f : X → Y) (y : Y) (hf : Bijective f) | ||
: Bijective fun x => f x + y | ||
:= by sorry_proof | ||
|
||
@[fprop] | ||
theorem HAdd.hAdd.arg_a1.Bijective_rule | ||
[AddGroup Y] | ||
(y : Y) (f : X → Y) (hf : Bijective f) | ||
: Bijective fun x => y + f x | ||
:= by sorry_proof | ||
|
||
|
||
-- HSub.hSub ------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop] | ||
theorem HSub.hSub.arg_a0.Bijective_rule | ||
[AddGroup Y] | ||
(f : X → Y) (y : Y) (hf : Bijective f) | ||
: Bijective fun x => f x - y | ||
:= by sorry_proof | ||
|
||
|
||
@[fprop] | ||
theorem HSub.hSub.arg_a1.Bijective_rule | ||
[AddGroup Y] | ||
(y : Y) (f : X → Y) (hf : Bijective f) | ||
: Bijective fun x => y - f x | ||
:= by sorry_proof | ||
|
||
|
||
|
||
-- HMul.hMul ------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
@[fprop] | ||
def HMul.hMul.arg_a0.Bijective_rule_group | ||
[Group Y] | ||
(f : X → Y) (y : Y) (hf : Bijective f) | ||
: Bijective (fun x => f x * y) | ||
:= by sorry_proof | ||
|
||
@[fprop] | ||
def HMul.hMul.arg_a1.Bijective_rule_group | ||
[Group Y] | ||
(y : Y) (f : X → Y) (hf : Bijective f) | ||
: Bijective (fun x => y * f x) | ||
:= by sorry_proof | ||
|
||
@[fprop] | ||
def HMul.hMul.arg_a0.Bijective_rule_field | ||
[Field Y] | ||
(f : X → Y) (y : Y) (hf : Bijective f) (hy : y ≠ 0) | ||
: Bijective (fun x => f x * y) | ||
:= by sorry_proof | ||
|
||
@[fprop] | ||
def HMul.hMul.arg_a1.Bijective_rule_field | ||
[Field Y] | ||
(y : Y) (f : X → Y) (hf : Bijective f) (hy : y ≠ 0) | ||
: Bijective (fun x => y * f x) | ||
:= by sorry_proof | ||
|
||
|
||
|
||
-- SMul.sMul ------------------------------------------------------------------- | ||
-------------------------------------------------------------------------------- | ||
|
||
|
||
@[fprop] | ||
def HSMul.hSMul.arg_a1.Bijective_rule_group | ||
[Group G] [MulAction G Y] | ||
(g : G) (f : X → Y) (hf : Bijective f) | ||
: Bijective (fun x => g • f x) | ||
:= by sorry_proof | ||
|
||
|
||
@[fprop] | ||
def HSMul.hSMul.arg_a1.Bijective_rule_field | ||
[Field R] [MulAction R Y] | ||
(r : R) (f : X → Y) (hf : Bijective f) (hr : r ≠ 0) | ||
: Bijective (fun x => r • f x) | ||
:= by sorry_proof | ||
|
||
|