forked from IGNF/myria3d
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
executable file
·79 lines (62 loc) · 2.96 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
try:
# It is safer to import comet before all other imports.
import comet_ml # noqa
except ImportError:
print("Warning: package comet_ml not found. This may break things if you use a comet callback.")
from enum import Enum
import dotenv
import hydra
from omegaconf import DictConfig
from myria3d.pctl.dataset.hdf5 import create_hdf5
from myria3d.pctl.dataset.utils import get_las_paths_by_split_dict
# load environment variables from `.env` file if it exists
# recursively searches for `.env` in all folders starting from work dir
dotenv.load_dotenv(override=True)
class TASK_NAMES(Enum):
FIT = "fit"
TEST = "test"
FINETUNE = "finetune"
PREDICT = "predict"
HDF5 = "create_hdf5"
@hydra.main(config_path="configs/", config_name="config.yaml")
def main(config: DictConfig):
"""Entrypoint to training-related logic and inference code.
Run `python run.py -h` to print configuration and see parameters.
Hydra configs can be overriden in CLI with `--config-path` and `--config-name` arguments.
"""
# Imports should be nested inside @hydra.main to optimize tab completion
# Read more here: https://github.com/facebookresearch/hydra/issues/934
from myria3d.predict import predict
from myria3d.train import train
from myria3d.utils import utils
# A couple of optional utilities:
# - disabling python warnings
# - easier access to debug mode
# - forcing debug friendly configuration
# You can safely get rid of this line if you don't want those
utils.extras(config)
# Pretty print config using Rich library
if config.get("print_config"):
utils.print_config(config, resolve=False)
task_name = config.task.get("task_name")
if task_name in [TASK_NAMES.FIT.value, TASK_NAMES.TEST.value, TASK_NAMES.FINETUNE.value]:
"""Training, evaluation, testing, or finetuning of a neural network."""
return train(config)
elif task_name == TASK_NAMES.PREDICT.value:
"""Infer probabilities and automate semantic segmentation decisions on unseen data."""
return predict(config)
elif task_name == TASK_NAMES.HDF5.value:
"""Build an HDF5 file from a directory with las files."""
las_paths_by_split_dict = get_las_paths_by_split_dict(config.datamodule.get("data_dir"), config.datamodule.get("split_csv_path"))
create_hdf5(
las_paths_by_split_dict=las_paths_by_split_dict,
hdf5_file_path=config.datamodule.get("hdf5_file_path"),
tile_width=config.datamodule.get("tile_width"),
subtile_width=config.datamodule.get("subtile_width"),
subtile_shape=config.datamodule.get("subtile_shape"),
pre_filter=hydra.utils.instantiate(config.datamodule.get("pre_filter")),
subtile_overlap_train=config.datamodule.get("subtile_overlap_train"),
points_pre_transform=hydra.utils.instantiate(config.datamodule.get("points_pre_transform"))
)
if __name__ == "__main__":
main()