forked from revenol/LyDROO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
memory.py
160 lines (126 loc) · 5.03 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# #################################################################
# This file contains the main DROO operations, including building DNN,
# Storing data sample, Training DNN, and generating quantized binary offloading decisions.
# version 1.0 -- February 2020. Written based on Tensorflow 2 by Weijian Pan and
# Liang Huang (lianghuang AT zjut.edu.cn)
# ###################################################################
from __future__ import print_function
import torch
import torch.optim as optim
import torch.nn as nn
import numpy as np
# DNN network for memory
class MemoryDNN:
def __init__(
self,
net,
learning_rate = 0.01,
training_interval=10,
batch_size=100,
memory_size=1000,
output_graph=False
):
self.net = net
self.training_interval = training_interval # learn every #training_interval
self.lr = learning_rate
self.batch_size = batch_size
self.memory_size = memory_size
# store all binary actions
self.enumerate_actions = []
# stored # memory entry
self.memory_counter = 1
# store training cost
self.cost_his = []
# initialize zero memory [h, m]
self.memory = np.zeros((self.memory_size, self.net[0] + self.net[-1]))
# construct memory network
self._build_net()
def _build_net(self):
self.model = nn.Sequential(
nn.Linear(self.net[0], self.net[1]),
nn.ReLU(),
nn.Linear(self.net[1], self.net[2]),
nn.ReLU(),
nn.Linear(self.net[2], self.net[3]),
nn.Sigmoid()
)
def remember(self, h, m):
# replace the old memory with new memory
idx = self.memory_counter % self.memory_size
self.memory[idx, :] = np.hstack((h, m))
self.memory_counter += 1
def encode(self, h, m):
# encoding the entry
self.remember(h, m)
# train the DNN every multiple steps
if self.memory_counter % self.training_interval == 0:
self.learn()
def learn(self):
# sample batch memory from all memory
if self.memory_counter > self.memory_size:
sample_index = np.random.choice(self.memory_size, size=self.batch_size)
else:
sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
batch_memory = self.memory[sample_index, :]
h_train = torch.Tensor(batch_memory[:, 0: self.net[0]])
m_train = torch.Tensor(batch_memory[:, self.net[0]:])
# train the DNN
optimizer = optim.Adam(self.model.parameters(), lr=self.lr,betas = (0.09,0.999),weight_decay=0.0001)
criterion = nn.BCELoss()
self.model.train()
optimizer.zero_grad()
predict = self.model(h_train)
loss = criterion(predict, m_train)
loss.backward()
optimizer.step()
self.cost = loss.item()
assert(self.cost > 0)
self.cost_his.append(self.cost)
def decode(self, h, k = 1, mode = 'OP'):
# to have batch dimension when feed into Tensor
h = torch.Tensor(h[np.newaxis, :])
self.model.eval()
m_pred = self.model(h)
m_pred = m_pred.detach().numpy()
if mode == 'OP':
return self.knm(m_pred[0], k)
elif mode == 'KNN':
return self.knn(m_pred[0], k)
elif mode == 'OPN':
return self.opn(m_pred[0], k)
else:
print("The action selection must be 'OP' or 'KNN' or 'OPN'")
def knm(self, m, k = 1):
# return k order-preserving binary actions
m_list = []
# generate the first binary offloading decision with respect to equation (8)
m_list.append(1*(m>0.5))
if k > 1:
# generate the remaining K-1 binary offloading decisions with respect to equation (9)
m_abs = abs(m-0.5)
idx_list = np.argsort(m_abs)[:k-1]
for i in range(k-1):
if m[idx_list[i]] >0.5:
# set the \hat{x}_{t,(k-1)} to 0
m_list.append(1*(m - m[idx_list[i]] > 0))
else:
# set the \hat{x}_{t,(k-1)} to 1
m_list.append(1*(m - m[idx_list[i]] >= 0))
return m_list
def opn(self, m, k= 1):
return self.knm(m,k)+self.knm(m+np.random.normal(0,1,len(m)),k)
def knn(self, m, k = 1):
# list all 2^N binary offloading actions
if len(self.enumerate_actions) == 0:
import itertools
self.enumerate_actions = np.array(list(map(list, itertools.product([0, 1], repeat=self.net[0]))))
# the 2-norm
sqd = ((self.enumerate_actions - m)**2).sum(1)
idx = np.argsort(sqd)
return self.enumerate_actions[idx[:k]]
def plot_cost(self):
import matplotlib.pyplot as plt
plt.plot(np.arange(len(self.cost_his))*self.training_interval, self.cost_his)
plt.ylabel('Training Loss')
plt.xlabel('Time Frames')
plt.show()