forked from revenol/LyDROO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ResourceAllocation.py
182 lines (142 loc) · 5.41 KB
/
ResourceAllocation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# -*- coding: utf-8 -*-
"""
Agorithm 1 of solving th optimal resource allocation problem (P4) in Sev.IV.B given offloading decisions in (P1)
Input: binary offloading mode, channel, weighting parameter, data queu length, current data arrival, virtual energy queue length
Output: the optimal objective, the computation rate and energy consumption of all users
Created on Sat May 9 2020
@author: BI Suzhi
"""
import numpy as np
from scipy.special import lambertw
from scipy.optimize import linprog
def Algo1_NUM(mode,h,w,Q,Y, V=20):
ch_fact = 10**10 # scaling factors to avoid numerical precision problems
d_fact = 10**6
Y_factor = 10
Y = Y*Y_factor
phi = 100 # number of cpu cycles for processing 1 bit data
W = 2 # bandwidth MHz
k_factor = (10**(-26))*(d_fact**3)
vu =1.1
N0 = W*d_fact*(10**(-17.4))*(10**(-3))*ch_fact # noise power in watt
P_max = 0.1 # maximum transmit power 100mW
f_max = 300 # maximum local computing frequency 100MHz
N = len(Q)
if len(w) == 0:
w = np.ones((N));
a = np.ones((N)) # control parameter in (26) of paper
q = Q
for i in range(len(a)):
a[i] = Q[i] + V*w[i]
energy = np.zeros((N));
rate = np.zeros((N));
f0_val =0;
idx0=np.where(mode==0)[0]
M0 = len(idx0)
if M0==0:
f0_val =0 # objective value of local computing user
else:
Y0 = np.zeros((M0)); # virtual engery queue
a0 = np.zeros((M0));
q0 = np.zeros((M0));
f0 = np.zeros((M0)); # optimal local computing frequency
for i in range(M0):
tmp_id = idx0[i]
Y0[i] = Y[tmp_id];
a0[i] = a[tmp_id];
q0[i] = q[tmp_id];
if Y0[i] == 0:
f0[i] = np.minimum(phi*q0[i],f_max);
else:
tmp1 = np.sqrt(a0[i]/3/phi/k_factor/Y0[i])
tmp2 = np.minimum(phi*q0[i],f_max)
f0[i] = np.minimum(tmp1,tmp2)
energy[tmp_id] = k_factor*(f0[i]**3);
rate[tmp_id] = f0[i]/phi;
f0_val = f0_val + a0[i]*rate[tmp_id] - Y0[i]*energy[tmp_id];
idx1=np.where(mode==1)[0]
M1 = len(idx1)
if M1==0:
f1_val =0 # objective value of local computing users
else:
Y1 = np.zeros((M1)); # virtual engery queue
a1 = np.zeros((M1));
q1 = np.zeros((M1));
h1 = np.zeros((M1));
R_max = np.zeros((M1));
tau1 = np.zeros((M1));
delta0 = 1; # precision parameter
lb = 0; # upper and lower bound of dual variable
ub =10**4;
for i in range(M1):
tmp_id = idx1[i];
Y1[i] = Y[tmp_id];
a1[i] = a[tmp_id];
q1[i] = q[tmp_id];
h1[i] = h[tmp_id];
SNR = h1/N0;
R_max[i] = W/vu*np.log2(1+ SNR[i]*P_max);
rat = np.zeros((M1)) # c/tau
e_ratio = np.zeros((M1)) #e/tau
parac = np.zeros((M1))
c = np.zeros((M1))
while np.abs(ub - lb) > delta0:
mu = (lb+ub)/2;
for i in range(M1):
if Y1[i] == 0:
rat[i] = R_max[i];
else:
A = 1 + mu/Y1[i]/P_max;
A = np.minimum(A,20);
tmpA = np.real(lambertw(-A*np.exp(-A)))
tmp1 = np.minimum(-A/tmpA,10**20);
snr0 = 1/P_max * (tmp1-1);
if SNR[i]<=snr0:
rat[i] = R_max[i];
else:
z1 = np.exp(-1)*(mu*SNR[i]/Y1[i]-1);
rat[i] = (np.real(lambertw(z1))+1)*W/np.log(2)/vu;
e_ratio[i] = 1/SNR[i]*(2**(rat[i]*vu/W)-1);
parac[i] = a1[i] - mu/rat[i] -Y1[i]/rat[i]*e_ratio[i];
if parac[i]>0:
c[i] = q1[i]
else:
c[i] = 0
tau1[i] = c[i]/rat[i];
if np.sum(tau1)>1:
lb=mu
else:
ub=mu
para_e = np.zeros((M1));
para = np.zeros((M1));
d = np.zeros((M1));
tau_fact = np.zeros((M1));
A_matrix = np.zeros((2*M1+1,M1));
b = np.zeros((2*M1+1));
for i in range(M1):
para_e[i] = Y1[i]*e_ratio[i]/rat[i];
para[i] = a1[i] - para_e[i];
d[i] = q1[i];
tau_fact[i] = 1/rat[i];
A_matrix[0:M1,:] = np.eye(M1,dtype=int);
A_matrix[M1:2*M1,:] = -np.eye(M1,dtype=int);
A_matrix[2*M1,:] = tau_fact;
b[0:M1] = d;
b[M1:2*M1] = np.zeros((M1));
b[2*M1] =1;
res = linprog(-para, A_ub=A_matrix, b_ub=b)
r1 = np.maximum(res.x,0)
r1 = np.around(r1, decimals=6)
tau1 = np.zeros((M1));
f1_val =0;
for i in range(M1):
tmp_id = idx1[i]
tau1[i] = r1[i]/rat[i]
rate[tmp_id] = r1[i]
energy[tmp_id] = e_ratio[i]*tau1[i];
f1_val = f1_val + a1[i]*rate[tmp_id]- Y1[i]*energy[tmp_id];
f_val = f1_val + f0_val
f_val = np.around(f_val, decimals=6)
rate = np.around(rate, decimals=6)
energy = np.around(energy, decimals=6)
return f_val,rate,energy