forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
poisson_regression_param.py
137 lines (128 loc) · 7.57 KB
/
poisson_regression_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
from federatedml.param.glm_param import LinearModelParam
from federatedml.param.callback_param import CallbackParam
from federatedml.param.encrypt_param import EncryptParam
from federatedml.param.encrypted_mode_calculation_param import EncryptedModeCalculatorParam
from federatedml.param.cross_validation_param import CrossValidationParam
from federatedml.param.init_model_param import InitParam
from federatedml.param.stepwise_param import StepwiseParam
from federatedml.util import consts
class PoissonParam(LinearModelParam):
"""
Parameters used for Poisson Regression.
Parameters
----------
penalty : {'L2', 'L1'}, default: 'L2'
Penalty method used in Poisson. Please note that, when using encrypted version in HeteroPoisson,
'L1' is not supported.
tol : float, default: 1e-4
The tolerance of convergence
alpha : float, default: 1.0
Regularization strength coefficient.
optimizer : {'rmsprop', 'sgd', 'adam', 'adagrad'}, default: 'rmsprop'
Optimize method
batch_size : int, default: -1
Batch size when updating model. -1 means use all data in a batch. i.e. Not to use mini-batch strategy.
learning_rate : float, default: 0.01
Learning rate
max_iter : int, default: 20
The maximum iteration for training.
init_param: InitParam object, default: default InitParam object
Init param method object.
early_stop : str, 'weight_diff', 'diff' or 'abs', default: 'diff'
Method used to judge convergence.
a) diff: Use difference of loss between two iterations to judge whether converge.
b) weight_diff: Use difference between weights of two consecutive iterations
c) abs: Use the absolute value of loss to judge whether converge. i.e. if loss < eps, it is converged.
exposure_colname: str or None, default: None
Name of optional exposure variable in dTable.
encrypt_param: EncryptParam object, default: default EncryptParam object
encrypt param
encrypted_mode_calculator_param: EncryptedModeCalculatorParam object, default: default EncryptedModeCalculatorParam object
encrypted mode calculator param
cv_param: CrossValidationParam object, default: default CrossValidationParam object
cv param
stepwise_param: StepwiseParam object, default: default StepwiseParam object
stepwise param
decay: int or float, default: 1
Decay rate for learning rate. learning rate will follow the following decay schedule.
lr = lr0/(1+decay*t) if decay_sqrt is False. If decay_sqrt is True, lr = lr0 / sqrt(1+decay*t)
where t is the iter number.
decay_sqrt: bool, default: True
lr = lr0/(1+decay*t) if decay_sqrt is False, otherwise, lr = lr0 / sqrt(1+decay*t)
validation_freqs: int, list, tuple, set, or None
validation frequency during training, required when using early stopping.
The default value is None, 1 is suggested. You can set it to a number larger than 1 in order to speed up training by skipping validation rounds.
When it is larger than 1, a number which is divisible by "max_iter" is recommended, otherwise, you will miss the validation scores of the last training iteration.
early_stopping_rounds: int, default: None
If positive number specified, at every specified training rounds, program checks for early stopping criteria.
Validation_freqs must also be set when using early stopping.
metrics: list or None, default: None
Specify which metrics to be used when performing evaluation during training process. If metrics have not improved at early_stopping rounds, trianing stops before convergence.
If set as empty, default metrics will be used. For regression tasks, default metrics are ['root_mean_squared_error', 'mean_absolute_error']
use_first_metric_only: bool, default: False
Indicate whether to use the first metric in `metrics` as the only criterion for early stopping judgement.
floating_point_precision: None or integer
if not None, use floating_point_precision-bit to speed up calculation,
e.g.: convert an x to round(x * 2**floating_point_precision) during Paillier operation, divide
the result by 2**floating_point_precision in the end.
callback_param: CallbackParam object
callback param
"""
def __init__(self, penalty='L2',
tol=1e-4, alpha=1.0, optimizer='rmsprop',
batch_size=-1, learning_rate=0.01, init_param=InitParam(),
max_iter=20, early_stop='diff',
exposure_colname=None,
encrypt_param=EncryptParam(),
encrypted_mode_calculator_param=EncryptedModeCalculatorParam(),
cv_param=CrossValidationParam(), stepwise_param=StepwiseParam(),
decay=1, decay_sqrt=True,
validation_freqs=None, early_stopping_rounds=None, metrics=None, use_first_metric_only=False,
floating_point_precision=23, callback_param=CallbackParam()):
super(PoissonParam, self).__init__(penalty=penalty, tol=tol, alpha=alpha, optimizer=optimizer,
batch_size=batch_size, learning_rate=learning_rate,
init_param=init_param, max_iter=max_iter,
early_stop=early_stop, cv_param=cv_param, decay=decay,
decay_sqrt=decay_sqrt, validation_freqs=validation_freqs,
early_stopping_rounds=early_stopping_rounds, metrics=metrics,
floating_point_precision=floating_point_precision,
encrypt_param=encrypt_param,
use_first_metric_only=use_first_metric_only,
stepwise_param=stepwise_param,
callback_param=callback_param)
self.encrypted_mode_calculator_param = copy.deepcopy(encrypted_mode_calculator_param)
self.exposure_colname = exposure_colname
def check(self):
descr = "poisson_regression_param's "
super(PoissonParam, self).check()
if self.encrypt_param.method != consts.PAILLIER:
raise ValueError(
descr + "encrypt method supports 'Paillier' only")
if self.optimizer not in ['sgd', 'rmsprop', 'adam', 'adagrad']:
raise ValueError(
descr + "optimizer not supported, optimizer should be"
" 'sgd', 'rmsprop', 'adam', or 'adagrad'")
if self.exposure_colname is not None:
if type(self.exposure_colname).__name__ != "str":
raise ValueError(
descr + "exposure_colname {} not supported, should be string type".format(self.exposure_colname))
self.encrypted_mode_calculator_param.check()
return True