forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhetero_nn_param.py
295 lines (243 loc) · 12.3 KB
/
hetero_nn_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
from types import SimpleNamespace
from federatedml.param.base_param import BaseParam
from federatedml.param.base_param import deprecated_param
from federatedml.param.callback_param import CallbackParam
from federatedml.param.cross_validation_param import CrossValidationParam
from federatedml.param.encrypt_param import EncryptParam
from federatedml.param.encrypted_mode_calculation_param import EncryptedModeCalculatorParam
from federatedml.param.predict_param import PredictParam
from federatedml.util import consts
class DatasetParam(BaseParam):
def __init__(self, dataset_name=None, **kwargs):
super(DatasetParam, self).__init__()
self.dataset_name = dataset_name
self.param = kwargs
def check(self):
if self.dataset_name is not None:
self.check_string(self.dataset_name, 'dataset_name')
def to_dict(self):
ret = {'dataset_name': self.dataset_name, 'param': self.param}
return ret
class SelectorParam(object):
"""
Parameters
----------
method: None or str
back propagation select method, accept "relative" only, default: None
selective_size: int
deque size to use, store the most recent selective_size historical loss, default: 1024
beta: int
sample whose selective probability >= power(np.random, beta) will be selected
min_prob: Numeric
selective probability is max(min_prob, rank_rate)
"""
def __init__(self, method=None, beta=1, selective_size=consts.SELECTIVE_SIZE, min_prob=0, random_state=None):
self.method = method
self.selective_size = selective_size
self.beta = beta
self.min_prob = min_prob
self.random_state = random_state
def check(self):
if self.method is not None and self.method not in ["relative"]:
raise ValueError('selective method should be None be "relative"')
if not isinstance(self.selective_size, int) or self.selective_size <= 0:
raise ValueError("selective size should be a positive integer")
if not isinstance(self.beta, int):
raise ValueError("beta should be integer")
if not isinstance(self.min_prob, (float, int)):
raise ValueError("min_prob should be numeric")
class CoAEConfuserParam(BaseParam):
"""
A label protect mechanism proposed in paper: "Batch Label Inference and Replacement Attacks in Black-Boxed Vertical Federated Learning"
paper link: https://arxiv.org/abs/2112.05409
Convert true labels to fake soft labels by using an auto-encoder.
Args:
enable: boolean
run CoAE or not
epoch: None or int
auto-encoder training epochs
lr: float
auto-encoder learning rate
lambda1: float
parameter to control the difference between true labels and fake soft labels. Larger the parameter,
autoencoder will give more attention to making true labels and fake soft label different.
lambda2: float
parameter to control entropy loss, see original paper for details
verbose: boolean
print loss log while training auto encoder
"""
def __init__(self, enable=False, epoch=50, lr=0.001, lambda1=1.0, lambda2=2.0, verbose=False):
super(CoAEConfuserParam, self).__init__()
self.enable = enable
self.epoch = epoch
self.lr = lr
self.lambda1 = lambda1
self.lambda2 = lambda2
self.verbose = verbose
def check(self):
self.check_boolean(self.enable, 'enable')
if not isinstance(self.epoch, int) or self.epoch <= 0:
raise ValueError("epoch should be a positive integer")
if not isinstance(self.lr, float):
raise ValueError('lr should be a float number')
if not isinstance(self.lambda1, float):
raise ValueError('lambda1 should be a float number')
if not isinstance(self.lambda2, float):
raise ValueError('lambda2 should be a float number')
self.check_boolean(self.verbose, 'verbose')
@deprecated_param("validation_freqs", "early_stopping_rounds", "metrics", "use_first_metric_only")
class HeteroNNParam(BaseParam):
"""
Parameters used for Hetero Neural Network.
Parameters
----------
task_type: str, task type of hetero nn model, one of 'classification', 'regression'.
bottom_nn_define: a dict represents the structure of bottom neural network.
interactive_layer_define: a dict represents the structure of interactive layer.
interactive_layer_lr: float, the learning rate of interactive layer.
top_nn_define: a dict represents the structure of top neural network.
optimizer: optimizer method, accept following types:
1. a string, one of "Adadelta", "Adagrad", "Adam", "Adamax", "Nadam", "RMSprop", "SGD"
2. a dict, with a required key-value pair keyed by "optimizer",
with optional key-value pairs such as learning rate.
defaults to "SGD".
loss: str, a string to define loss function used
epochs: int, the maximum iteration for aggregation in training.
batch_size : int, batch size when updating model.
-1 means use all data in a batch. i.e. Not to use mini-batch strategy.
defaults to -1.
early_stop : str, accept 'diff' only in this version, default: 'diff'
Method used to judge converge or not.
a) diff: Use difference of loss between two iterations to judge whether converge.
floating_point_precision: None or integer, if not None, means use floating_point_precision-bit to speed up calculation,
e.g.: convert an x to round(x * 2**floating_point_precision) during Paillier operation, divide
the result by 2**floating_point_precision in the end.
callback_param: CallbackParam object
"""
def __init__(self,
task_type='classification',
bottom_nn_define=None,
top_nn_define=None,
interactive_layer_define=None,
interactive_layer_lr=0.9,
config_type='pytorch',
optimizer='SGD',
loss=None,
epochs=100,
batch_size=-1,
early_stop="diff",
tol=1e-5,
seed=100,
encrypt_param=EncryptParam(),
encrypted_mode_calculator_param=EncryptedModeCalculatorParam(),
predict_param=PredictParam(),
cv_param=CrossValidationParam(),
validation_freqs=None,
early_stopping_rounds=None,
metrics=None,
use_first_metric_only=True,
selector_param=SelectorParam(),
floating_point_precision=23,
callback_param=CallbackParam(),
coae_param=CoAEConfuserParam(),
dataset=DatasetParam()
):
super(HeteroNNParam, self).__init__()
self.task_type = task_type
self.bottom_nn_define = bottom_nn_define
self.interactive_layer_define = interactive_layer_define
self.interactive_layer_lr = interactive_layer_lr
self.top_nn_define = top_nn_define
self.batch_size = batch_size
self.epochs = epochs
self.early_stop = early_stop
self.tol = tol
self.optimizer = optimizer
self.loss = loss
self.validation_freqs = validation_freqs
self.early_stopping_rounds = early_stopping_rounds
self.metrics = metrics or []
self.use_first_metric_only = use_first_metric_only
self.encrypt_param = copy.deepcopy(encrypt_param)
self.encrypted_model_calculator_param = encrypted_mode_calculator_param
self.predict_param = copy.deepcopy(predict_param)
self.cv_param = copy.deepcopy(cv_param)
self.selector_param = selector_param
self.floating_point_precision = floating_point_precision
self.callback_param = copy.deepcopy(callback_param)
self.coae_param = coae_param
self.dataset = dataset
self.seed = seed
self.config_type = 'pytorch' # pytorch only
def check(self):
assert isinstance(self.dataset, DatasetParam), 'dataset must be a DatasetParam()'
self.dataset.check()
self.check_positive_integer(self.seed, 'seed')
if self.task_type not in ["classification", "regression"]:
raise ValueError("config_type should be classification or regression")
if not isinstance(self.tol, (int, float)):
raise ValueError("tol should be numeric")
if not isinstance(self.epochs, int) or self.epochs <= 0:
raise ValueError("epochs should be a positive integer")
if self.bottom_nn_define and not isinstance(self.bottom_nn_define, dict):
raise ValueError("bottom_nn_define should be a dict defining the structure of neural network")
if self.top_nn_define and not isinstance(self.top_nn_define, dict):
raise ValueError("top_nn_define should be a dict defining the structure of neural network")
if self.interactive_layer_define is not None and not isinstance(self.interactive_layer_define, dict):
raise ValueError(
"the interactive_layer_define should be a dict defining the structure of interactive layer")
if self.batch_size != -1:
if not isinstance(self.batch_size, int) \
or self.batch_size < consts.MIN_BATCH_SIZE:
raise ValueError(
" {} not supported, should be larger than 10 or -1 represent for all data".format(self.batch_size))
if self.early_stop != "diff":
raise ValueError("early stop should be diff in this version")
if self.metrics is not None and not isinstance(self.metrics, list):
raise ValueError("metrics should be a list")
if self.floating_point_precision is not None and \
(not isinstance(self.floating_point_precision, int) or
self.floating_point_precision < 0 or self.floating_point_precision > 63):
raise ValueError("floating point precision should be null or a integer between 0 and 63")
self.encrypt_param.check()
self.encrypted_model_calculator_param.check()
self.predict_param.check()
self.selector_param.check()
self.coae_param.check()
descr = "hetero nn param's "
for p in ["early_stopping_rounds", "validation_freqs",
"use_first_metric_only"]:
if self._deprecated_params_set.get(p):
if "callback_param" in self.get_user_feeded():
raise ValueError(f"{p} and callback param should not be set simultaneously,"
f"{self._deprecated_params_set}, {self.get_user_feeded()}")
else:
self.callback_param.callbacks = ["PerformanceEvaluate"]
break
if self._warn_to_deprecate_param("validation_freqs", descr, "callback_param's 'validation_freqs'"):
self.callback_param.validation_freqs = self.validation_freqs
if self._warn_to_deprecate_param("early_stopping_rounds", descr, "callback_param's 'early_stopping_rounds'"):
self.callback_param.early_stopping_rounds = self.early_stopping_rounds
if self._warn_to_deprecate_param("metrics", descr, "callback_param's 'metrics'"):
if self.metrics:
self.callback_param.metrics = self.metrics
if self._warn_to_deprecate_param("use_first_metric_only", descr, "callback_param's 'use_first_metric_only'"):
self.callback_param.use_first_metric_only = self.use_first_metric_only