forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cross_validation_param.py
75 lines (66 loc) · 3.18 KB
/
cross_validation_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from federatedml.param.base_param import BaseParam
# from federatedml.param.evaluation_param import EvaluateParam
from federatedml.util import consts
class CrossValidationParam(BaseParam):
"""
Define cross validation params
Parameters
----------
n_splits: int, default: 5
Specify how many splits used in KFold
mode: str, default: 'Hetero'
Indicate what mode is current task
role: {'Guest', 'Host', 'Arbiter'}, default: 'Guest'
Indicate what role is current party
shuffle: bool, default: True
Define whether do shuffle before KFold or not.
random_seed: int, default: 1
Specify the random seed for numpy shuffle
need_cv: bool, default False
Indicate if this module needed to be run
output_fold_history: bool, default True
Indicate whether to output table of ids used by each fold, else return original input data
returned ids are formatted as: {original_id}#fold{fold_num}#{train/validate}
history_value_type: {'score', 'instance'}, default score
Indicate whether to include original instance or predict score in the output fold history,
only effective when output_fold_history set to True
"""
def __init__(self, n_splits=5, mode=consts.HETERO, role=consts.GUEST, shuffle=True, random_seed=1,
need_cv=False, output_fold_history=True, history_value_type="score"):
super(CrossValidationParam, self).__init__()
self.n_splits = n_splits
self.mode = mode
self.role = role
self.shuffle = shuffle
self.random_seed = random_seed
# self.evaluate_param = copy.deepcopy(evaluate_param)
self.need_cv = need_cv
self.output_fold_history = output_fold_history
self.history_value_type = history_value_type
def check(self):
model_param_descr = "cross validation param's "
self.check_positive_integer(self.n_splits, model_param_descr)
self.check_valid_value(self.mode, model_param_descr, valid_values=[consts.HOMO, consts.HETERO])
self.check_valid_value(self.role, model_param_descr, valid_values=[consts.HOST, consts.GUEST, consts.ARBITER])
self.check_boolean(self.shuffle, model_param_descr)
self.check_boolean(self.output_fold_history, model_param_descr)
self.history_value_type = self.check_and_change_lower(
self.history_value_type, ["instance", "score"], model_param_descr)
if self.random_seed is not None:
self.check_positive_integer(self.random_seed, model_param_descr)