diff --git a/Mathlib/Topology/Algebra/UniformGroup/Basic.lean b/Mathlib/Topology/Algebra/UniformGroup/Basic.lean index 6d99d5ffcee64..8fd7dd61a29d2 100644 --- a/Mathlib/Topology/Algebra/UniformGroup/Basic.lean +++ b/Mathlib/Topology/Algebra/UniformGroup/Basic.lean @@ -207,37 +207,41 @@ lemma MonoidHom.tendsto_coe_cofinite_of_discrete [T2Space G] {H : Type*} [Group replace hf : Function.Injective f.rangeRestrict := by simpa exact f.range.tendsto_coe_cofinite_of_discrete.comp hf.tendsto_cofinite +end TopologicalGroup + +namespace TopologicalGroup + +variable {ι α G : Type*} [Group G] [u : UniformSpace G] [TopologicalGroup G] + @[to_additive] -theorem TopologicalGroup.tendstoUniformly_iff {ι α : Type*} (F : ι → α → G) (f : α → G) - (p : Filter ι) : - @TendstoUniformly α G ι (TopologicalGroup.toUniformSpace G) F f p ↔ - ∀ u ∈ 𝓝 (1 : G), ∀ᶠ i in p, ∀ a, F i a / f a ∈ u := - ⟨fun h u hu => h _ ⟨u, hu, fun _ => id⟩, fun h _ ⟨u, hu, hv⟩ => - mem_of_superset (h u hu) fun _ hi a => hv (hi a)⟩ +theorem tendstoUniformly_iff (F : ι → α → G) (f : α → G) (p : Filter ι) + (hu : TopologicalGroup.toUniformSpace G = u) : + TendstoUniformly F f p ↔ ∀ u ∈ 𝓝 (1 : G), ∀ᶠ i in p, ∀ a, F i a / f a ∈ u := + hu ▸ ⟨fun h u hu => h _ ⟨u, hu, fun _ => id⟩, + fun h _ ⟨u, hu, hv⟩ => mem_of_superset (h u hu) fun _ hi a => hv (hi a)⟩ @[to_additive] -theorem TopologicalGroup.tendstoUniformlyOn_iff {ι α : Type*} (F : ι → α → G) (f : α → G) - (p : Filter ι) (s : Set α) : - @TendstoUniformlyOn α G ι (TopologicalGroup.toUniformSpace G) F f p s ↔ - ∀ u ∈ 𝓝 (1 : G), ∀ᶠ i in p, ∀ a ∈ s, F i a / f a ∈ u := - ⟨fun h u hu => h _ ⟨u, hu, fun _ => id⟩, fun h _ ⟨u, hu, hv⟩ => - mem_of_superset (h u hu) fun _ hi a ha => hv (hi a ha)⟩ +theorem tendstoUniformlyOn_iff (F : ι → α → G) (f : α → G) (p : Filter ι) (s : Set α) + (hu : TopologicalGroup.toUniformSpace G = u) : + TendstoUniformlyOn F f p s ↔ ∀ u ∈ 𝓝 (1 : G), ∀ᶠ i in p, ∀ a ∈ s, F i a / f a ∈ u := + hu ▸ ⟨fun h u hu => h _ ⟨u, hu, fun _ => id⟩, + fun h _ ⟨u, hu, hv⟩ => mem_of_superset (h u hu) fun _ hi a ha => hv (hi a ha)⟩ @[to_additive] -theorem TopologicalGroup.tendstoLocallyUniformly_iff {ι α : Type*} [TopologicalSpace α] - (F : ι → α → G) (f : α → G) (p : Filter ι) : - @TendstoLocallyUniformly α G ι (TopologicalGroup.toUniformSpace G) _ F f p ↔ +theorem tendstoLocallyUniformly_iff [TopologicalSpace α] (F : ι → α → G) (f : α → G) + (p : Filter ι) (hu : TopologicalGroup.toUniformSpace G = u) : + TendstoLocallyUniformly F f p ↔ ∀ u ∈ 𝓝 (1 : G), ∀ (x : α), ∃ t ∈ 𝓝 x, ∀ᶠ i in p, ∀ a ∈ t, F i a / f a ∈ u := - ⟨fun h u hu => h _ ⟨u, hu, fun _ => id⟩, fun h _ ⟨u, hu, hv⟩ x => - Exists.imp (fun _ ⟨h, hp⟩ => ⟨h, mem_of_superset hp fun _ hi a ha => hv (hi a ha)⟩) - (h u hu x)⟩ + hu ▸ ⟨fun h u hu => h _ ⟨u, hu, fun _ => id⟩, fun h _ ⟨u, hu, hv⟩ x => + Exists.imp (fun _ ⟨h, hp⟩ => ⟨h, mem_of_superset hp fun _ hi a ha => hv (hi a ha)⟩) + (h u hu x)⟩ @[to_additive] -theorem TopologicalGroup.tendstoLocallyUniformlyOn_iff {ι α : Type*} [TopologicalSpace α] - (F : ι → α → G) (f : α → G) (p : Filter ι) (s : Set α) : - @TendstoLocallyUniformlyOn α G ι (TopologicalGroup.toUniformSpace G) _ F f p s ↔ +theorem tendstoLocallyUniformlyOn_iff [TopologicalSpace α] (F : ι → α → G) (f : α → G) + (p : Filter ι) (s : Set α) (hu : TopologicalGroup.toUniformSpace G = u) : + TendstoLocallyUniformlyOn F f p s ↔ ∀ u ∈ 𝓝 (1 : G), ∀ x ∈ s, ∃ t ∈ 𝓝[s] x, ∀ᶠ i in p, ∀ a ∈ t, F i a / f a ∈ u := - ⟨fun h u hu => h _ ⟨u, hu, fun _ => id⟩, fun h _ ⟨u, hu, hv⟩ x => + hu ▸ ⟨fun h u hu => h _ ⟨u, hu, fun _ => id⟩, fun h _ ⟨u, hu, hv⟩ x => (Exists.imp fun _ ⟨h, hp⟩ => ⟨h, mem_of_superset hp fun _ hi a ha => hv (hi a ha)⟩) ∘ h u hu x⟩