Skip to content

Commit

Permalink
chore: remove @[simp] attributes from monad-specific SatisfiesM lemmas (
Browse files Browse the repository at this point in the history
  • Loading branch information
kim-em authored Nov 19, 2024
1 parent 01f4969 commit 485efbc
Showing 1 changed file with 5 additions and 4 deletions.
9 changes: 5 additions & 4 deletions Batteries/Classes/SatisfiesM.lean
Original file line number Diff line number Diff line change
Expand Up @@ -185,14 +185,15 @@ theorem SatisfiesM_EStateM_eq :
rw [EStateM.run_map, EStateM.run]
split <;> simp_all

@[simp] theorem SatisfiesM_ReaderT_eq [Monad m] :
theorem SatisfiesM_ReaderT_eq [Monad m] :
SatisfiesM (m := ReaderT ρ m) p x ↔ ∀ s, SatisfiesM p (x.run s) :=
(exists_congr fun a => by exact ⟨fun eq _ => eq ▸ rfl, funext⟩).trans Classical.skolem.symm

theorem SatisfiesM_StateRefT_eq [Monad m] :
SatisfiesM (m := StateRefT' ω σ m) p x ↔ ∀ s, SatisfiesM p (x s) := by simp [ReaderT.run]
SatisfiesM (m := StateRefT' ω σ m) p x ↔ ∀ s, SatisfiesM p (x s) := by
simp [SatisfiesM_ReaderT_eq, ReaderT.run]

@[simp] theorem SatisfiesM_StateT_eq [Monad m] [LawfulMonad m] :
theorem SatisfiesM_StateT_eq [Monad m] [LawfulMonad m] :
SatisfiesM (m := StateT ρ m) (α := α) p x ↔ ∀ s, SatisfiesM (m := m) (p ·.1) (x.run s) := by
change SatisfiesM (m := StateT ρ m) (α := α) p x ↔ ∀ s, SatisfiesM (m := m) (p ·.1) (x s)
refine .trans ⟨fun ⟨f, eq⟩ => eq ▸ ?_, fun ⟨f, h⟩ => ?_⟩ Classical.skolem.symm
Expand All @@ -201,7 +202,7 @@ theorem SatisfiesM_StateRefT_eq [Monad m] :
· refine ⟨fun s => (fun ⟨⟨a, s'⟩, h⟩ => ⟨⟨a, h⟩, s'⟩) <$> f s, funext fun s => ?_⟩
show _ >>= _ = _; simp [← h]

@[simp] theorem SatisfiesM_ExceptT_eq [Monad m] [LawfulMonad m] :
theorem SatisfiesM_ExceptT_eq [Monad m] [LawfulMonad m] :
SatisfiesM (m := ExceptT ρ m) (α := α) p x ↔
SatisfiesM (m := m) (∀ a, · = .ok a → p a) x.run := by
change _ ↔ SatisfiesM (m := m) (∀ a, · = .ok a → p a) x
Expand Down

0 comments on commit 485efbc

Please sign in to comment.