The following metrics are consistently used in our benchmark:
-
Mean Corruption Error (mCE):
- The Corruption Error (CE) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$ . - The average CE for model
$A$ on all$N$ corruption types, i.e., mCE, is calculated as:$\text{mCE} = \frac{1}{N}\sum\text{CE}_i$ .
- The Corruption Error (CE) for model
-
Mean Resilience Rate (mRR):
- The Resilience Rate (RR) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$ - The average RR for model
$A$ on all$N$ corruption types, i.e., mRR, is calculated as:$\text{mRR} = \frac{1}{N}\sum\text{RR}_i$ .
- The Resilience Rate (RR) for model
Corruption | Light | Moderate | Heavy | Average | ||
---|---|---|---|---|---|---|
Fog | 36.76 | 36.62 | 31.29 | 34.89 | 147.54 | 62.53 |
Wet Ground | 52.89 | 46.86 | 45.58 | 48.44 | 112.06 | 86.81 |
Snow | 43.80 | 45.77 | 47.08 | 45.55 | 116.55 | 81.63 |
Motion Blur | 50.97 | 48.00 | 44.81 | 47.93 | 77.62 | 85.90 |
Beam Missing | 54.45 | 50.18 | 44.27 | 49.63 | 115.32 | 88.94 |
Crosstalk | 43.34 | 40.17 | 37.12 | 40.21 | 143.52 | 72.06 |
Incomplete Echo | 52.09 | 48.29 | 43.70 | 48.03 | 114.04 | 86.08 |
Cross-Sensor | 53.43 | 50.10 | 30.64 | 44.72 | 102.47 | 80.14 |
-
Summary:
$\text{mIoU}_{\text{clean}} =$ 55.80%,$\text{mCE} =$ 116.14%,$\text{mRR} =$ 80.51%.
@inproceedings{cortinhal2020salsanext,
title = {SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving},
author = {Tiago Cortinhal and George Tzelepis and Eren Erdal Aksoy},
booktitle = {Advances in Visual Computing: 15th International Symposium},
year = {2020},
}