The following metrics are consistently used in our benchmark:
-
Mean Corruption Error (mCE):
- The Corruption Error (CE) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$ . - The average CE for model
$A$ on all$N$ corruption types, i.e., mCE, is calculated as:$\text{mCE} = \frac{1}{N}\sum\text{CE}_i$ .
- The Corruption Error (CE) for model
-
Mean Resilience Rate (mRR):
- The Resilience Rate (RR) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$ - The average RR for model
$A$ on all$N$ corruption types, i.e., mRR, is calculated as:$\text{mRR} = \frac{1}{N}\sum\text{RR}_i$ .
- The Resilience Rate (RR) for model
Corruption | Light | Moderate | Heavy | Average | ||
---|---|---|---|---|---|---|
Fog | 53.12 | 50.60 | 39.19 | 47.64 | 118.65 | 74.73 |
Wet Ground | 55.48 | 52.64 | 52.49 | 53.54 | 100.98 | 83.98 |
Snow | 51.70 | 51.28 | 50.42 | 51.13 | 104.60 | 80.20 |
Motion Blur | 54.99 | 47.17 | 39.72 | 47.29 | 78.58 | 74.18 |
Beam Missing | 59.86 | 54.11 | 46.55 | 53.51 | 106.43 | 83.94 |
Crosstalk | 26.39 | 22.19 | 19.35 | 22.64 | 185.69 | 35.51 |
Incomplete Echo | 58.72 | 54.90 | 50.76 | 54.79 | 99.21 | 85.95 |
Cross-Sensor | 57.13 | 50.87 | 30.52 | 46.17 | 99.78 | 72.42 |
-
Summary:
$\text{mIoU}_{\text{clean}} =$ 63.75%,$\text{mCE} =$ 111.74%,$\text{mRR} =$ 73.86%.
@inproceedings{xu2021rpvnet,
title = {RPVNet: A Deep and Efficient Range-Point-Voxel Fusion Network for LiDAR Point Cloud Segmentation},
author = {Xu, Jianyun, Ruixiang Zhang, Jian Dou, Yushi Zhu, Jie Sun, and Shiliang Pu},
booktitle = {IEEE/CVF International Conference on Computer Vision},
year = {2021},
}