Skip to content

Latest commit

 

History

History
44 lines (33 loc) · 2.1 KB

RPVNet.md

File metadata and controls

44 lines (33 loc) · 2.1 KB

Robo3D Benchmark

The following metrics are consistently used in our benchmark:

  • Mean Corruption Error (mCE):

    • The Corruption Error (CE) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$.
    • The average CE for model $A$ on all $N$ corruption types, i.e., mCE, is calculated as: $\text{mCE} = \frac{1}{N}\sum\text{CE}_i$.
  • Mean Resilience Rate (mRR):

    • The Resilience Rate (RR) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$
    • The average RR for model $A$ on all $N$ corruption types, i.e., mRR, is calculated as: $\text{mRR} = \frac{1}{N}\sum\text{RR}_i$.

RPVNet

SemanticKITTI-C

Corruption Light Moderate Heavy Average $\text{CE}_i$ $\text{RR}_i$
Fog 53.12 50.60 39.19 47.64 118.65 74.73
Wet Ground 55.48 52.64 52.49 53.54 100.98 83.98
Snow 51.70 51.28 50.42 51.13 104.60 80.20
Motion Blur 54.99 47.17 39.72 47.29 78.58 74.18
Beam Missing 59.86 54.11 46.55 53.51 106.43 83.94
Crosstalk 26.39 22.19 19.35 22.64 185.69 35.51
Incomplete Echo 58.72 54.90 50.76 54.79 99.21 85.95
Cross-Sensor 57.13 50.87 30.52 46.17 99.78 72.42
  • Summary: $\text{mIoU}_{\text{clean}} =$ 63.75%, $\text{mCE} =$ 111.74%, $\text{mRR} =$ 73.86%.

References

@inproceedings{xu2021rpvnet,
  title = {RPVNet: A Deep and Efficient Range-Point-Voxel Fusion Network for LiDAR Point Cloud Segmentation},
  author = {Xu, Jianyun, Ruixiang Zhang, Jian Dou, Yushi Zhu, Jie Sun, and Shiliang Pu},
  booktitle = {IEEE/CVF International Conference on Computer Vision},
  year = {2021},
}