The following metrics are consistently used in our benchmark:
-
Mean Corruption Error (mCE):
- The Corruption Error (CE) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$ . - The average CE for model
$A$ on all$N$ corruption types, i.e., mCE, is calculated as:$\text{mCE} = \frac{1}{N}\sum\text{CE}_i$ .
- The Corruption Error (CE) for model
-
Mean Resilience Rate (mRR):
- The Resilience Rate (RR) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$ - The average RR for model
$A$ on all$N$ corruption types, i.e., mRR, is calculated as:$\text{mRR} = \frac{1}{N}\sum\text{RR}_i$ .
- The Resilience Rate (RR) for model
Corruption | Light | Moderate | Heavy | Average | ||
---|---|---|---|---|---|---|
Fog | 42.20 | 41.45 | 32.56 | 38.74 | 138.82 | 66.60 |
Wet Ground | 54.74 | 49.09 | 48.37 | 50.73 | 107.09 | 87.21 |
Snow | 50.89 | 49.48 | 47.88 | 49.42 | 108.26 | 84.96 |
Motion Blur | 48.60 | 41.44 | 35.28 | 41.77 | 86.81 | 71.81 |
Beam Missing | 56.92 | 54.30 | 51.09 | 54.10 | 105.08 | 93.00 |
Crosstalk | 29.36 | 25.39 | 22.64 | 25.79 | 178.13 | 44.34 |
Incomplete Echo | 51.42 | 49.04 | 46.41 | 48.96 | 112.00 | 84.17 |
Cross-Sensor | 47.01 | 40.77 | 30.54 | 39.44 | 112.25 | 67.80 |
-
Summary:
$\text{mIoU}_{\text{clean}} =$ 58.17%,$\text{mCE} =$ 118.56%,$\text{mRR} =$ 74.98%.
@inproceedings{zhang2020polarnet,
title = {PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation},
author = {Zhang, Yang and Zhou, Zixiang and David, Philip and Yue, Xiangyu and Xi, Zerong and Gong, Boqing and Foroosh, Hassan},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition}
year = {2020}
}