Skip to content

Latest commit

 

History

History
48 lines (34 loc) · 2.17 KB

PolarNet.md

File metadata and controls

48 lines (34 loc) · 2.17 KB

Robo3D Benchmark

The following metrics are consistently used in our benchmark:

  • Mean Corruption Error (mCE):

    • The Corruption Error (CE) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$.
    • The average CE for model $A$ on all $N$ corruption types, i.e., mCE, is calculated as: $\text{mCE} = \frac{1}{N}\sum\text{CE}_i$.
  • Mean Resilience Rate (mRR):

    • The Resilience Rate (RR) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$
    • The average RR for model $A$ on all $N$ corruption types, i.e., mRR, is calculated as: $\text{mRR} = \frac{1}{N}\sum\text{RR}_i$.

PolarNet

SemanticKITTI-C

Corruption Light Moderate Heavy Average $\text{CE}_i$ $\text{RR}_i$
Fog 42.20 41.45 32.56 38.74 138.82 66.60
Wet Ground 54.74 49.09 48.37 50.73 107.09 87.21
Snow 50.89 49.48 47.88 49.42 108.26 84.96
Motion Blur 48.60 41.44 35.28 41.77 86.81 71.81
Beam Missing 56.92 54.30 51.09 54.10 105.08 93.00
Crosstalk 29.36 25.39 22.64 25.79 178.13 44.34
Incomplete Echo 51.42 49.04 46.41 48.96 112.00 84.17
Cross-Sensor 47.01 40.77 30.54 39.44 112.25 67.80
  • Summary: $\text{mIoU}_{\text{clean}} =$ 58.17%, $\text{mCE} =$ 118.56%, $\text{mRR} =$ 74.98%.

nuScenes-C

References

@inproceedings{zhang2020polarnet,
  title = {PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation},
  author = {Zhang, Yang and Zhou, Zixiang and David, Philip and Yue, Xiangyu and Xi, Zerong and Gong, Boqing and Foroosh, Hassan},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition}
  year = {2020}
}